首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Protein Data Bank   总被引:163,自引:20,他引:163  
The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.  相似文献   

2.
3.
4.
5.
Intrinsic disorder in the Protein Data Bank   总被引:2,自引:0,他引:2  
The Protein Data Bank (PDB) is the preeminent source of protein structural information. PDB contains over 32,500 experimentally determined 3-D structures solved using X-ray crystallography or nuclear magnetic resonance spectroscopy. Intrinsically disordered regions fail to form a fixed 3-D structure under physiological conditions. In this study, we compare the amino-acid sequences of proteins whose structures are determined by X-ray crystallography with the corresponding sequences from the Swiss-Prot database. The analyzed dataset includes 16,370 structures, which represent 18,101 PDB chains and 5,434 different proteins from 910 different organisms (2,793 eukaryotic, 2,109 bacterial, 288 viral, and 244 archaeal). In this dataset, on average, each Swiss-Prot protein is represented by 7 PDB chains with 76% of the crystallized regions being represented by more than one structure. Intriguingly, the complete sequences of only approximately 7% of proteins are observed in the corresponding PDB structures, and only approximately 25% of the total dataset have >95% of their lengths observed in the corresponding PDB structures. This suggests that the vast majority of PDB proteins is shorter than their corresponding Swiss-Prot sequences and/or contain numerous residues, which are not observed in maps of electron density. To determine the prevalence of disordered regions in PDB, the residues in the Swiss-Prot sequences were grouped into four general categories, "Observed" (which correspond to structured regions), "Not observed" (regions with missing electron density, potentially disordered), "Uncharacterized," and "Ambiguous," depending on their appearance in the corresponding PDB entries. This non-redundant set of residues can be viewed as a 'fragment' or empirical domain database that contains a set of experimentally determined structured regions or domains and a set of experimentally verified disordered regions or domains. We studied the propensities and properties of residues in these four categories and analyzed their relations to the predictions of disorder using several algorithms. "Non-observed," "Ambiguous," and "Uncharacterized" regions were shown to possess the amino acid compositional biases typical of intrinsically disordered proteins. The application of four different disorder predictors (PONDR(R) VL-XT, VL3-BA, VSL1P, and IUPred) revealed that the vast majority of residues in the "Observed" dataset are ordered, and that the "Not observed" regions are mostly disordered. The "Uncharacterized" regions possess some tendency toward order, whereas the predictions for the short "Ambiguous" regions are really ambiguous. Long "Ambiguous" regions (>70 amino acid residues) are mostly predicted to be ordered, suggesting that they are likely to be "wobbly" domains. Overall, we showed that completely ordered proteins are not highly abundant in PDB and many PDB sequences have disordered regions. In fact, in the analyzed dataset approximately 10% of the PDB proteins contain regions of consecutive missing or ambiguous residues longer than 30 amino-acids and approximately 40% of the proteins possess short regions (> or =10 and < 30 amino-acid long) of missing and ambiguous residues.  相似文献   

6.
The Protein Data Bank (PDB) is the repository for three-dimensional structures of biological macromolecules, determined by experimental methods. The data in the archive is free and easily available via the Internet from any of the worldwide centers managing this global archive. These data are used by scientists, researchers, bioinformatics specialists, educators, students, and general audiences to understand biological phenomenon at a molecular level. Analysis of this structural data also inspires and facilitates new discoveries in science. This chapter describes the tools and methods currently used for deposition, processing, and release of data in the PDB. References to future enhancements are also included. Shuchismita Dutta, Kyle Burkhardt, and Ganesh J. Swaminathan have contributed equally to this work.  相似文献   

7.
The Protein Data Bank (PDB) is a widely used biological databaseof macromolecular structures with a long history. This historyis treated as lessons learned and is used to highlight whatare believed to be the best practices important to developersof biological databases today. While the focus is on data quality,data representation and the information technology to supportthese data, the non-data and technology issues cannot be ignored.The role of the human factor in the form of users, collaborators,scientific society and ad hoc committees is also included.   相似文献   

8.
The Protein Data Bank (PDB) is the worldwide repository of 3D structures of proteins, nucleic acids and complex assemblies. The PDB’s large corpus of data (> 100,000 structures) and related citations provide a well-organized and extensive test set for developing and understanding data citation and access metrics. In this paper, we present a systematic investigation of how authors cite PDB as a data repository. We describe a novel metric based on information cascade constructed by exploring the citation network to measure influence between competing works and apply that to analyze different data citation practices to PDB. Based on this new metric, we found that the original publication of RCSB PDB in the year 2000 continues to attract most citations though many follow-up updates were published. None of these follow-up publications by members of the wwPDB organization can compete with the original publication in terms of citations and influence. Meanwhile, authors increasingly choose to use URLs of PDB in the text instead of citing PDB papers, leading to disruption of the growth of the literature citations. A comparison of data usage statistics and paper citations shows that PDB Web access is highly correlated with URL mentions in the text. The results reveal the trend of how authors cite a biomedical data repository and may provide useful insight of how to measure the impact of a data repository.  相似文献   

9.
The Protein Data Bank is a computer-based archival file for macromolecular structures. The Bank stores in a uniform format atomic co-ordinates and partial bond connectivities, as derived from crystallographic studies. Text included in each data entry gives pertinent information for the structure at hand (e.g. species from which the molecule has been obtained, resolution of diffraction data, literature citations and specifications of secondary structure). In addition to atomic co-ordinates and connectivities, the Protein Data Bank stores structure factors and phases, although these latter data are not placed in any uniform format. Input of data to the Bank and general maintenance functions are carried out at Brookhaven National Laboratory. All data stored in the Bank are available on magnetic tape for public distribution, from Brookhaven (to laboratories in the Americas), Tokyo (Japan), and Cambridge (Europe and worldwide). A master file is maintained at Brookhaven and duplicate copies are stored in Cambridge and Tokyo. In the future, it is hoped to expand the scope of the Protein Data Bank to make available co-ordinates for standard structural types (e.g. α-helix, RNA double-stranded helix) and representative computer programs of utility in the study and interpretation of macromolecular structures.  相似文献   

10.
11.
MOTIVATION: Integral membrane proteins play important roles in living cells. Although these proteins are estimated to constitute 25% of proteins at a genomic scale, the Protein Data Bank (PDB) contains only a few hundred membrane proteins due to the difficulties with experimental techniques. The presence of transmembrane proteins in the structure data bank, however, is quite invisible, as the annotation of these entries is rather poor. Even if a protein is identified as a transmembrane one, the possible location of the lipid bilayer is not indicated in the PDB because these proteins are crystallized without their natural lipid bilayer, and currently no method is publicly available to detect the possible membrane plane using the atomic coordinates of membrane proteins. RESULTS: Here, we present a new geometrical approach to distinguish between transmembrane and globular proteins using structural information only and to locate the most likely position of the lipid bilayer. An automated algorithm (TMDET) is given to determine the membrane planes relative to the position of atomic coordinates, together with a discrimination function which is able to separate transmembrane and globular proteins even in cases of low resolution or incomplete structures such as fragments or parts of large multi chain complexes. This method can be used for the proper annotation of protein structures containing transmembrane segments and paves the way to an up-to-date database containing the structure of all known transmembrane proteins and fragments (PDB_TM) which can be automatically updated. The algorithm is equally important for the purpose of constructing databases purely of globular proteins.  相似文献   

12.
13.
The growing number of large macromolecular complexes in the Protein Data Bank (PDB) has warranted a closer look at these structures. An overview of the types of molecules that form these large complexes is presented here. Some of the challenges at the PDB in representing, archiving, visualizing, and analyzing these structures are discussed along with possible means to overcome them.  相似文献   

14.
A symposium celebrating the 40th anniversary of the Protein Data Bank archive (PDB), organized by the Worldwide Protein Data Bank, was held at Cold Spring Harbor Laboratory (CSHL) October 28-30, 2011. PDB40's distinguished speakers highlighted four decades of innovation in structural biology, from the early?era of structural determination to future directions for the field.  相似文献   

15.
It is currently believed that the atlas of existing protein structures is faithfully represented in the Protein Data Bank. However, whether this atlas covers the full universe of all possible protein structures is still a highly debated issue. By using a sophisticated numerical approach, we performed an exhaustive exploration of the conformational space of a 60 amino acid polypeptide chain described with an accurate all-atom interaction potential. We generated a database of around 30,000 compact folds with at least of secondary structure corresponding to local minima of the potential energy. This ensemble plausibly represents the universe of protein folds of similar length; indeed, all the known folds are represented in the set with good accuracy. However, we discover that the known folds form a rather small subset, which cannot be reproduced by choosing random structures in the database. Rather, natural and possible folds differ by the contact order, on average significantly smaller in the former. This suggests the presence of an evolutionary bias, possibly related to kinetic accessibility, towards structures with shorter loops between contacting residues. Beside their conceptual relevance, the new structures open a range of practical applications such as the development of accurate structure prediction strategies, the optimization of force fields, and the identification and design of novel folds.  相似文献   

16.
17.
18.
ProDDO represents a 'pre-screened' database that denotes disorder (or possible disorder) in proteins from the PDB.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号