首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human Y-family DNA polymerase kappa (polκ) is specialized to bypass bulky lesions in DNA in an error-free way, thus protecting cells from carcinogenic bulky DNA adducts. Benzo[a]pyrene (BP) is one of the most ubiquitous polycyclic aromatic hydrocarbons and an environmental carcinogen. BP covalently modifies DNA and generates mutagenic, bulky adducts. The major BP adduct formed in cells is 10S (+)-trans-anti-BP-N2-dG adduct (BP-dG), which is associated with cancer. The molecular mechanism of how polκ replicates BP-dG accurately is not clear. Here we report the structure of polκ captured at the lesion-extension stage: the enzyme is extending the primer strand after the base pair containing the BP-dG adduct in the template strand at the −1 position. Polκ accommodates the BP adduct in the nascent DNA’s minor groove and keeps the adducted DNA helix in a B-form. Two water molecules cover the edge of the minor groove of the replicating base pair (0 position), which is secured by the BP ring in the −1 position in a 5′ orientation. The 5′ oriented BP adduct keeps correct Watson-Crick base pairing in the active site and promotes high fidelity replication. Our structural and biochemical data reveal a unique molecular basis for accurate DNA replication right after the bulky lesion BP-dG.  相似文献   

2.
DNA replication fidelity is dictated by DNA polymerase enzymes and associated proteins. When the template DNA is damaged by a carcinogen, the fidelity of DNA replication is sometimes compromized, allowing mispaired bases to persist and be incorporated into the DNA, resulting in a mutation. A key question in chemical carcinogenesis by metabolically activated polycyclic aromatic hydrocarbons (PAHs) is the nature of the interactions between the carcinogen-damaged DNA and the replicating polymerase protein that permits the mutagenic misincorporation to occur. PAHs are environmental carcinogens that, upon metabolic activation, can react with DNA to form bulky covalently linked combination molecules known as carcinogen-DNA adducts. Benzo[a]pyrene (BP) is a common PAH found in a wide range of material ingested by humans, including cigarette smoke, car exhaust, broiled meats and fish, and as a contaminant in other foods. BP is metabolically activated into several highly reactive intermediates, including the highly tumorigenic (+)-anti-benzo[a]pyrene diol epoxide (BPDE). The primary product of the reaction of (+)-anti-BPDE with DNA, the (+)-trans-anti-benzo[a]pyrene diol epoxide-N(2)-dG ((+)-ta-[BP]G) adduct, is the most mutagenic BP adduct in mammalian systems and primarily causes G-to-T transversion mutations, resulting from the mismatch of adenine with BP-damaged guanine during replication. In order to elucidate the structural characteristics and interactions between the DNA polymerase and carcinogen-damaged DNA that allow a misincorporation opposite a DNA lesion, we have modeled a (+)-ta-[BP]G adduct at a primer-template junction within the replicative phage T7 DNA polymerase containing an incoming dATP, the nucleotide most commonly mismatched with the (+)-ta-[BP]G adduct during replication. A one nanosecond molecular dynamics simulation, using AMBER 5.0, has been carried out, and the resultant trajectory analyzed. The modeling and simulation have revealed that a (+)-ta-[BP]G:A mismatch can be accommodated stably in the active site so that the fidelity mechanisms of the polymerase are evaded and the polymerase accepts the incoming mutagenic base. In this structure, the modified guanine base is in the syn conformation, with the BP moiety positioned in the major groove, without interfering with the normal protein-DNA interactions required for faithful polymerase function. This structure is stabilized by a hydrogen bond between the modified guanine base and dATP partner, hydrophobic interactions between the BP moiety and the polymerase, a hydrogen bond between the modified guanine base and the polymerase, and several hydrogen bonds between the BP moiety and polymerase side-chains. Moreover, the G:A mismatch in this system closely resembles the size and shape of a normal Watson-Crick pair. These features reveal how the polymerase proofreading machinery may be evaded in the presence of a mutagenic carcinogen-damaged DNA, so that a mismatch can be accommodated readily, allowing bypass of the adduct by the replicative T7 DNA polymerase.  相似文献   

3.
Minor adducts, derived from the covalent binding of anti-benzo[a]pyrene-7,8-dihydroxy-9,10-epoxide to cellular DNA, may play an important role in generating mutations and initiating cancer. We have applied a combined NMR-computational approach including intensity based refinement to determine the solution structure of the minor (+)-cis-anti-[BP]dA adduct positioned opposite dT in the d(C1-T2-C3-T4-C5-[BP]A6-C7-T8-T9-C10-C11). (d(G12-G13-A14-A15-G16-T17-G18-A19-G20+ ++-A21-G22) 11-mer duplex. The BP ring system is intercalated toward the 5'-side of the [BP]dA6 lesion site without disrupting the flanking Watson-Crick dC5.dG18 and [BP]dA6.dT17 base pairs. This structure of the (+)-cis-anti-[BP]dA.dT 11-mer duplex, containing a bay region benzo[a]pyrenyl [BP]dA adduct, is compared with the corresponding structure of the (+)-trans-anti-[BPh]dA.dT 11-mer duplex (Cosman et al., Biochemistry 32, 12488-12497, 1993), which contains a fjord region benzo[c]phenanthrenyl [BPh]dA adduct with the same R stereochemistry at the linkage site. The carcinogen intercalates toward the 5'-direction of the modified strand in both duplexes (the adduct is embedded within the same sequence context) with the buckling of the Watson-Crick [BP]dA6.dT17 base pair more pronounced in the (+)-cis-anti-[BP]dA.dT 11-mer duplex compared to its Watson-Crick [BPh]dA.dT17 base pair in the (+)-trans-anti-[BPh]dA.dT 11-mer duplex. The available structural studies of covalent polycyclic aromatic hydrocarbon (PAH) carcinogen-DNA adducts point toward the emergence of a general theme where distinct alignments are adopted by PAH adducts covalently linked to the N(6) of adenine when compared to the N(2) of guanine in DNA duplexes. The [BPh]dA and [BP]dA N(6)-adenine adducts intercalate their polycyclic aromatic rings into the helix without disruption of their modified base pairs. This may reflect the potential flexibility associated with the positioning of the covalent tether and the benzylic ring of the carcinogen in the sterically spacious major groove. By contrast, such an intercalation without modified base pair disruption option appears not to be available to [BP]dG N(2)-guanine adducts where the covalent tether and the benzylic ring are positioned in the more sterically crowded minor groove. In the case of [BP]dG adducts, the benzopyrenyl ring is either positioned in the minor groove without base pair disruption, or if intercalated into the helix, requires disruption of the modified base pair and displacement of the bases out of the helix.  相似文献   

4.
The non-steroidal anti-estrogen tamoxifen [TAM] has been in clinical use over the last two decades as a potent adjunct chemotherapeutic agent for treatment of breast cancer. It has also been given prophylactically to women with a strong family history of breast cancer. However, tamoxifen treatment has also been associated with increased endometrial cancer, possibly resulting from the reaction of metabolically activated tamoxifen derivatives with cellular DNA. Such DNA adducts can be mutagenic and the activities of isomeric adducts may be conformation-dependent. We therefore investigated the high resolution NMR solution conformation of one covalent adduct (cis-isomer, S-epimer of [TAM]G) formed from the reaction of tamoxifen [TAM] to N(2)-of guanine in the d(C-[TAM]G-C).d(G-C-G) sequence context at the 11-mer oligonucleotide duplex level. Our NMR results establish that the S-cis [TAM]G lesion is accomodated within a widened minor groove without disruption of the Watson-Crick [TAM]G. C and flanking Watson-Crick G.C base-pairs. The helix axis of the bound DNA oligomer is bent by about 30 degrees and is directed away from the minor groove adduct site. The presence of such a bulky [TAM]G adduct with components of the TAM residue on both the 5'- and the 3'-side of the modified base could compromise the fidelity of the minor groove polymerase scanning machinery.  相似文献   

5.
DNA polymerase enzymes employ a number of innate fidelity mechanisms to ensure the faithful replication of the genome. However, when confronted with DNA damage, their fidelity mechanisms can be evaded, resulting in a mutation that may contribute to the carcinogenic process. The environmental carcinogen benzo[a]pyrene is metabolically activated to reactive intermediates, including the tumorigenic (+)-anti-benzo[a]pyrene diol epoxide, which can attack DNA at the exocyclic amino group of guanine to form the major (+)-trans-anti-[BP]-N(2)-dG adduct. Bulky adducts such as (+)-trans-anti-[BP]-N(2)-dG primarily block DNA replication, but are occasionally bypassed and cause mutations if paired with an incorrect base. In vitro standing-start primer-extension assays show that the preferential insertion of A opposite (+)-trans-anti-[BP]-N(2)-dG is independent of the sequence context, but the primer is extended preferentially when dT is positioned opposite the damaged base in a 5'-CG*T-3' sequence context. Regardless of the base positioned opposite (+)-trans-anti-[BP]-N(2)-dG, extension of the primer past the lesion site poses the greatest block to polymerase progression. In order to gain insight into primer-extension of each base opposite (+)-trans-anti-[BP]-N(2)-dG, we carried out molecular modeling and 1.25 ns unrestrained molecular dynamics simulations of the adduct in the +1 position of the template within the replicative pol I family T7 DNA polymerase. Each of the four bases was modeled at the 3' terminus of the primer, incorporated opposite the adduct, and the next-to-be replicated base was in the active site with its Watson-Crick partner as the incoming nucleotide. As in our studies of nucleotide incorporation, (+)-trans-anti-[BP]-N(2)-dG was modeled in the syn conformation in the +1 position, with the BP moiety on the open major groove side of the primer-template duplex region, leaving critical protein-DNA interactions intact. The present work revealed that the efficiency of primer-extension past this bulky adduct opposite each of the four bases in the 5'-CG*T-3' sequence can be rationalized by the stability of interactions between the polymerase protein, primer-template DNA and incoming nucleotide. However, the relative stabilization of each nucleotide opposite (+)-trans-anti-[BP]-N(2)-dG in the +1 position (T > G > A > or = C) differed from that when the adduct and partner were the nascent base-pair (A > T > or = G > C). In addition, extension past (+)-trans-anti-[BP]-N(2)-dG may pose a greater block to a high fidelity DNA polymerase than does nucleotide incorporation opposite the adduct because the presence of the modified base-pair in the +1 position is more disruptive to the polymerase-DNA interactions than it is within the active site itself. The dN:(+)-trans-anti-[BP]-N(2)-dG base-pair is strained to shield the bulky aromatic BP moiety from contact with the solvent in the +1 position, causing disruption of protein-DNA interactions that would likely result in decreased extension of the base-pair. These studies reveal in molecular detail the kinds of specific structural interactions that determine the function of a processive DNA polymerase when challenged by a bulky DNA adduct.  相似文献   

6.
Y-family DNA polymerases lack some of the mechanisms that replicative DNA polymerases employ to ensure fidelity, resulting in higher error rates during replication of undamaged DNA templates and the ability to bypass certain aberrant bases, such as those produced by exposure to carcinogens, including benzo[a]pyrene (BP). A tumorigenic metabolite of BP, (+)-anti-benzo-[a]pyrene diol epoxide, attacks DNA to form the major 10S (+)-trans-anti-[BP]-N(2)-dG adduct, which has been shown to be mutagenic in a number of prokaryotic and eukaryotic systems. The 10S (+)-trans-anti-[BP]-N(2)-dG adduct can cause all three base substitution mutations, and the SOS response in Escherichia coli increases bypass of bulky adducts, suggesting that Y-family DNA polymerases are involved in the bypass of such lesions. Dpo4 belongs to the DinB branch of the Y-family, which also includes E. coli pol IV and eukaryotic pol kappa. We carried out primer extension assays in conjunction with molecular modeling and molecular dynamics studies in order to elucidate the structure-function relationship involved in nucleotide incorporation opposite the bulky 10S (+)-trans-anti-[BP]-N(2)-dG adduct by Dpo4. Dpo4 is able to bypass the 10S (+)-trans-anti-[BP]-N(2)-dG adduct, albeit to a lesser extent than unmodified guanine, and the V(max) values for insertion of all four nucleotides opposite the adduct by Dpo4 are similar. Computational studies suggest that 10S (+)-trans-anti-[BP]-N(2)-dG can be accommodated in the active site of Dpo4 in either the anti or syn conformation due to the limited protein-DNA contacts and the open nature of both the minor and major groove sides of the nascent base pair, which can contribute to the promiscuous nucleotide incorporation opposite this lesion.  相似文献   

7.
8.
The accuracy of DNA replication results from both the intrinsic DNA polymerase fidelity and the DNA sequence. Although the recent structural studies on polymerases have brought new insights on polymerase fidelity, the role of DNA sequence and structure is less well understood. Here, the analysis of the crystal structures of hotspots for polymerase slippage including (CA)n and (A)n tracts in different intermolecular contexts reveals that, in the B-form, these sequences share common structural alterations which may explain the high rate of replication errors. In particular, a two-faced "Janus-like" structure with shifted base-pairs in the major groove but an apparent normal geometry in the minor groove constitutes a molecular decoy specifically suitable to mislead the polymerases. A model of the rat polymerase beta bound to this structure suggests that an altered conformation of the nascent template-primer duplex can interfere with correct nucleotide incorporation by affecting the geometry of the active site and breaking the rules of base-pairing, while at the same time escaping enzymatic mechanisms of error discrimination which scan for the correct geometry of the minor groove.In contrast, by showing that the A-form greatly attenuates the sequence-dependent structural alterations in hotspots, this study suggests that the A-conformation of the nascent template-primer duplex at the vicinity of the polymerase active site will contribute to fidelity. The A-form may play the role of a structural buffer which preserves the correct geometry of the active site for all sequences. The detailed comparison of the conformation of the nascent template-primer duplex in the available crystal structures of DNA polymerase-DNA complexes shows that polymerase beta, the least accurate enzyme, is unique in binding to a B-DNA duplex even close to its active site. This model leads to several predictions which are discussed in the light of published experimental data.  相似文献   

9.
The potent mutagen/carcinogen benzo[a]pyrene (B[a]P) is metabolically activated to (+)-anti-B[a]PDE, which induces a full spectrum of mutations (e.g. GC-->TA, GC-->AT, etc.). One hypothesis for this complexity is that different mutations are induced by different conformations of its major adduct [+ta]-B[a]P-N2-dG when bypassed during DNA replication (probably by different DNA polymerases). Previous molecular modeling studies suggested that B[a]P-N2-dG adducts can in principle adopt at least 16 potential conformational classes in ds-DNA. Herein we report on molecular modeling studies with the eight conformations most likely to be relevant to base substitution mutagenesis in 10 cases where mutagenesis has been studied in ds-DNA plasmids in E. coli with B[a]P-N2-dG adducts of differing stereoisomers and DNA sequence contexts, as well as in five cases where the conformation is known by NMR. Of the approximately 11,000 structures generated in this study, the computed lowest energy structures are reported for 120 cases (i.e. eight conformations and 15 examples), and their conformations compared. Of the eight conformations, four are virtually always computed to be high in energy. The remaining four lower energy conformations include two with the BP moiety in the minor groove (designated: BPmi5 and BPmi3), and two base-displaced conformations, one with the dG moiety in the major groove (designated: Gma5) and one with the dG in the minor groove (designated: Gmi3). Interestingly, these four are the only conformations that have been observed for B[a]P-N2-dG adducts in NMR studies. Independent of sequence contexts and adduct stereochemistry, BPmi5 structures tend to look reasonably similar, as do BPmi3 structures, while the base-displaced structures Gma5 and BPmi3 tend to show greater variability in structure. A correlation was sought between modeling and mutagenesis results in the case of the low energy conformations BPmi5, BPmi3, Gma5 and Gma3. Plots of log[(G-->T)/(G-->A)] versus energy[(conformation X)-(conformation Y)] were constructed for all six pairwise combinations of these four conformations, and the only plot giving a straight line involved Gma5 and Gmi3. While this finding is striking, its significance is unclear (as discussed).  相似文献   

10.
We report below on the solution structures of stereoisomeric "fjord" region trans-anti-benzo[c]phenanthrene-N2-guanine (designated (BPh)G) adducts positioned opposite cytosine within the (C-(BPh)G-C).(G-C-G) sequence context. We observe intercalation of the phenanthrenyl ring with stereoisomer-dependent directionality, without disruption of the modified (BPh)G.C base-pair. Intercalation occurs to the 5' side of the modified strand for the 1S stereoisomeric adduct and to the 3' side for the 1R stereoisomeric adduct, with the S and R-trans-isomers related to one another by inversion in a mirror plane at all four chiral carbon atoms on the benzylic ring. Intercalation of the fjord region BPh ring into the helix without disruption of the modified base-pair is achieved through buckling of the (BPh)G.C base-pair, displacement of the linkage bond from the plane of the (BPh)G base, adaptation of a chair pucker by the BPh benzylic ring and the propeller-like deviation from planarity of the BPh phenanthrenyl ring. It is noteworthy that intercalation without base-pair disruption occurs from the minor groove side for S and R-trans-anti BPh-N2-guanine adducts opposite C, in contrast to our previous demonstration of intercalation without modified base-pair disruption from the major groove side for S and R-trans-anti BPh-N6-adenine adducts opposite T. Further, these results on fjord region 1S and 1R-trans-anti (BPh)G adducts positioned opposite C are in striking contrast to earlier research with "bay" region benzo[a]pyrene-N2-guanine (designated (BP)G) adducts positioned opposite cytosine, where 10S and 10R-trans-anti stereoisomers were positioned with opposite directionality in the minor groove without modified base-pair disruption. They also are in contrast to the 10S and 10R-cis-anti stereoisomers of (BP)G adducts opposite C, where the pyrenyl ring is intercalated into the helix with directionality, but the modified base and its partner on the opposite strand are displaced out of the helix. These results are especially significant given the known greater tumorigenic potential of fjord region compared to bay region polycyclic aromatic hydrocarbons. The tumorigenic potential has been linked to repair efficiency such that bay region adducts can be readily repaired while their fjord region counterparts are refractory to repair. Our structural results propose a link between DNA adduct conformation and repair-dependent mutagenic activity, which could ultimately translate into structure-dependent differences in tumorigenic activities. We propose that the fjord region minor groove-linked BPh-N2-guanine and major groove-linked BPh-N6-adenine adducts are refractory to repair based on our observations that the phenanthrenyl ring intercalates into the helix without modified base-pair disruption. The helix is therefore minimally perturbed and the phenanthrenyl ring is not available for recognition by the repair machinery. By contrast, the bay region BP-N2-G adducts are susceptible to repair, since the repair machinery can recognize either the pyrenyl ring positioned in the minor groove for the trans-anti groove-aligned stereoisomers, or the disrupted modified base-pair for the cis-anti base-displaced intercalated stereoisomers.  相似文献   

11.
Adduct-induced conformational heterogeneity complicates the understanding of how DNA adducts exert mutation. A case in point is the N-deacetylated AF lesion [N-(2'-deoxyguanosin-8-yl)-2-aminofluorene], the major adduct derived from the strong liver carcinogen N-acetyl-2-aminofluorene. Three conformational families have been previously characterized and are dependent on the positioning of the aminofluorene rings: B is in the "B-DNA" major groove, S is "stacked" into the helix with base-displacement, and W is "wedged" into the minor groove. Here, we conducted (19)F NMR, CD, T(m), and modeling experiments at various primer positions with respect to a template modified by a fluorine tagged AF-adduct (FAF). In the first set, the FAF-G was paired with C and in the second set it was paired with A. The FAF-G:C oligonucleotides were found to preferentially adopt the B or S-conformers while the FAF-G:A mismatch ones preferred the B and W-conformers. The conformational preferences of both series were dependent on temperature and complementary strand length; the largest differences in conformation were displayed at lower temperatures. The CD and T(m) results are in general agreement with the NMR data. Molecular modeling indicated that the aminofluorene moiety in the minor groove of the W-conformer would impose a steric clash with the tight-packing amino acid residues on the DNA binding area of the Bacillus fragment (BF), a replicative DNA polymerase. In the case of the B-type conformer, the carcinogenic moiety resides in the solvent-exposed major groove throughout the replication/translocation process. The present dynamic NMR results, combined with previous primer extension kinetic data by Miller & Grollman, support a model in which adduct-induced conformational heterogeneities at positions remote from the replication fork affect polymerase function through a long-range DNA-protein interaction.  相似文献   

12.
Interstrand cross-links of cisplatin induce striking distortions in DNA   总被引:1,自引:0,他引:1  
In the reaction between cellular DNA and cisplatin, different bifunctional adducts are formed including intrastrand and interstrand cross-links. The respective role of these lesions in the cytotoxicity of the drug is not yet elucidated. This paper deals with the current knowledge on cisplatin interstrand cross-links and presents results on the formation, stability and structure of these adducts. A key step in the studies of these lesions is the recent determination of solution and crystallographic structures of double-stranded oligonucleotides containing a unique interstrand cross-link. The DNA distortions induced by this adduct exhibit unprecedented features such as the location of the platinum residue in the minor groove, the extrusion of the cytosines of the cross-linked d(GpC).d(GpC) site, the bending of the helix axis towards the minor groove and a large DNA unwinding. In addition to a detailed determination of the distortions, the high resolution of the crystal structure allowed us to locate the water molecules surrounding the adduct. The possible implications of this structure for the chemical properties and the cellular processing of cisplatin interstrand cross-links are discussed.  相似文献   

13.
Nucleotide excision repair (NER) is the primary pathway for the removal of DNA adducts that distort the double helix. In the yeast Saccharomyces cerevisiae the RAD6 epistasis group defines a more poorly characterized set of DNA damage response pathways, believed to be distinct from NER. Here we show that the elimination of the DNA minor groove adducts formed by an important class of anticancer antibiotic (CC-1065 family) requires NER factors in S. cerevisiae. We also demonstrate that the elimination of this class of minor groove adduct from the active MFA2 gene depends upon functional Rad18 and Rad6. This is most clear for the repair of adducts on the transcribed strand, where an absolute requirement for Rad6 and Rad18 was seen. Further experiments revealed that a specific RAD6-RAD18-controlled subpathway, the RAD5 branch, mediates these events. Cells disrupted for rad5 are highly sensitive to this minor groove binding agent, and rad5 cells exhibit an in vivo adduct elimination defect indistinguishable from that seen in rad6 and rad18 cells as well as in NER-defective cells. Our results indicate that the RAD5 subpathway may interact with NER factors during the repair of certain DNA adducts.  相似文献   

14.
15.
Topoisomerase I (top1) relieves supercoiling in DNA by forming transient covalent cleavage complexes. These cleavage complexes can accumulate in the presence of damaged DNA or anticancer drugs that either intercalate or lie in the minor groove. Recently we reported that covalent diol epoxide (DE) adducts of benzo[a]pyrene (BaP) at the exocyclic amino group of G(+1) block cleavage at a preferred cleavage site ( approximately CTT-G(+1)G(+2)A approximately ) and cause accumulation of cleavage products at remote sites. In the present study, we have found that the 10S G(+2) adduct of BaP DE, which lies toward the scissile bond in the minor groove, blocks normal cleavage, whereas the 10R isomer, which orients away from this bond, allows normal cleavage but blocks religation. In contrast to BaP, the pair of benzo[c] phenanthrene (BcPh) DE adducts at G(+2), which intercalate from the minor groove either between G(+1)/G(+2) or between G(+2)/A, allow normal cleavage but block religation. Both intercalated BcPh DE adducts at G(+1) suppress normal cleavage, as do both groove bound BaP DE adducts at this position. These studies demonstrate that these DE adducts provide a novel set of tools to study DNA topoisomerases and emphasize the importance of contacts between the minor groove and top1's catalytic site.  相似文献   

16.
CC-1065 is a potent natural antitumor antibiotic that binds non-covalently and covalently (N-3 adenine adduct) in the minor groove of B-form DNA. Synthetic analogs of CC-1065 do not exhibit the delayed death toxicity of CC-1065 and are efficacious anticancer agents, some of them curative in murine tumor models. In an attempt to understand the different biological properties of CC-1065 and analogs, we have determined the following quantities for CC-1065, enantiomeric CC-1065, and three biologically active analogs and their enantiomers: the calf thymus DNA (CT-DNA) induced molar ellipticity of the adduct (or how rigidly the adduct is held in the right-hand conformation of the minor groove); the stability of the adduct with respect to long incubation times and to digestion by snake venom phosphodiesterase I (SVPD); the stabilizing effect on the CT-DNA helix of the covalently and non-covalently bound species with respect to thermal melting; and the CT-DNA binding/bonding (non-covalent/covalent) profiles at a low molar ratio of nucleotide to drug. The major observations from these studies are as follows: (i) molecules which show large DNA interaction parameters, stable adducts, and significant non-covalent binding exhibit delayed death toxicity; (ii) molecules which show intermediate DNA interaction parameters and stable adducts, but do not show significant non-covalent binding, do not exhibit delayed death toxicity and are biologically active; (iii) molecules which show small DNA interaction parameters and unstable DNA adducts are biologically inactive. The results suggest that a window exists in the affinity for the minor groove of DNA wherein an analog may possess the correct balance of toxicity and activity to make a useful anticancer agent. Outside of this window, the analog causes delayed deaths or has no significant biological activity.  相似文献   

17.
18.
The tripeptide 1,2-dihydro-(3 H )-pyrrolo[3,2- e ]indole-7-carboxylate (CDPI3) binds to the minor groove of DNA with high affinity. When this minor groove binder is conjugated to the 5'-end of short oligonucleotides the conjugates form unusually stable hybrids with complementary DNA and thus may have useful diagnostic and/or therapeutic applications. In order to gain an understanding of the structural interactions between the CDPI3minor groove binding moiety and the DNA, we have determined and compared the solution structure of a duplex consisting of oligodeoxyribonucleotide 5'-TGATTATCTG-3' conjugated at the 5'-end to CDPI3 and its complementary strand to an unmodified control duplex of the same sequence using nuclear magnetic resonance techniques. Thermal denaturation studies indicated that the hybrid of this conjugate with its complementary strand had a melting temperature that was 30 degrees C higher compared with the unmodified control duplex. Following restrained molecular dynamics and relaxation matrix refinement, the solution structure of the CDPI3-conjugated DNA duplex demonstrated that the overall shape of the duplex was that of a straight B-type helix and that the CDPI3moiety was bound snugly in the minor groove, where it was stabilized by extensive van der Waal's interactions.  相似文献   

19.
Polycyclic aromatic hydrocarbon (PAH)-DNA adducts pervert the execution or fidelity of enzymatic DNA transactions and cause mutations and cancer. Here, we examine the effects of intercalating PAH-DNA adducts on the religation reaction of vaccinia DNA topoisomerase, a prototypal type IB topoisomerase (TopIB), and the 3' end-resection reaction of Escherichia coli exonuclease III (ExoIII), a DNA repair enzyme. Vaccinia TopIB forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a target site 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p / N(-1) in duplex DNA. The rate of the forward cleavage reaction is suppressed to varying degrees by benzo[a]pyrene (BP) or benzo[c]phenanthrene (BPh) adducts at purine bases within the 3'-G(+5)G(+4)G(+3)A(+2)A(+1)T(-1)A(-2) sequence of the nonscissile strand. We report that BP adducts at the +1 and -2 N6-deoxyadenosine (dA) positions flanking the scissile phosphodiester slow the rate of DNA religation to a greater degree than they do the cleavage rate. By increasing the cleavage equilibrium constant > or = 10-fold, the BPdA adducts, which are intercalated via the major groove, act as TopIB poisons. With respect to ExoIII, we find that (i) single BPdA adducts act as durable roadblocks to ExoIII digestion, which is halted at sites 1 and 2 nucleotides prior to the modified base; (ii) single BPhdA adducts, which also intercalate via the major groove, elicit a transient pause prior to the lesion, which is eventually resected; and (iii) BPh adducts at N2-deoxyguanosine, which intercalate via the minor groove, are durable impediments to ExoIII digestion. These results highlight the sensitivity of repair outcomes to the structure of the PAH ring system and whether intercalation occurs via the major or minor groove.  相似文献   

20.
A new protein domain for binding to DNA through the minor groove.   总被引:2,自引:0,他引:2       下载免费PDF全文
R Freire  M Salas    J M Hermoso 《The EMBO journal》1994,13(18):4353-4360
Protein p6 of the Bacillus subtilis phage phi 29 binds with low sequence specificity to DNA through the minor groove, forming a multimeric nucleoprotein complex that activates the initiation of phi 29 DNA replication. Deletion analysis suggested that the N-terminal part of protein p6, predicted to form an amphipathic alpha-helix, is involved in DNA binding. We have constructed site-directed mutants at the polar side of the putative alpha-helix. DNA binding and activation of initiation of phi 29 DNA replication were impaired in most of the mutant proteins obtained. A 19 amino acid peptide comprising the N-terminus of protein p6 interacted with a DNA fragment containing high-affinity signals for protein p6 binding with approximately 50-fold higher affinity than the peptide corresponding to an inactive mutant. Both wild-type peptide and protein p6 recognized the same sequences in this DNA fragment. This result, together with distamycin competition experiments, suggested that the wild-type peptide also binds to DNA through the minor groove. In addition, CD spectra of the wild-type peptide showed an increase in the alpha-helical content when bound to DNA. All these results indicate that an alpha-helical structure located in the N-terminal region of protein p6 is involved in DNA binding through the minor groove.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号