首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adiponectin exerts anti-inflammatory effects via macrophages, suppressing the production of pro-inflammatory cytokines in response to bacterial lipopolysaccharide (LPS). Here, we provide experimental evidence that the "anti-inflammatory" effect of adiponectin may be due to an induction of macrophage tolerance: globular adiponectin (gAd) is a powerful inducer of TNF-alpha and IL-6 secretion in primary human peripheral macrophages, in the THP-1 human macrophage cell line, and in primary mouse peritoneal macrophages. Pre-exposure of macrophages to 10 microg/ml gAd rendered them tolerant to further gAd exposure or to other pro-inflammatory stimuli such as TLR3 ligand polyI:C and TLR4 ligand LPS, while pre-exposure to 1 microg/ml of and re-exposure to 10 microg/ml gAd unmasked its pro-inflammatory properties. GAd induced NF-kappaB activation and tolerance to further gAd or LPS exposure. Our data suggest that adiponectin constant presence in the circulation in high levels (in lean subjects) renders macrophages resistant to pro-inflammatory stimuli, including its own.  相似文献   

2.
Interleukin-12 (IL-12) has been identified as a pro-inflammatory cytokine which is thought to contribute to the development of atherosclerosis. However, to date, the various associations between factors related to the course of type 2 diabetes, like metabolic compensation, beta cell secretory dysfunction, insulin resistance and IL-12 serum levels, remain unclear. Our study involved 41 patients with type 2 diabetes, 19 patients with coronary artery disease (CAD), and 19 healthy controls. We measured serum levels of fasting glucose, HbA1c, 1,5-anhydro-d-glucitol, and lipids. In addition, serum levels of C-peptide, insulin, proinsulin and IL-12 were assayed. HOMAIR score was calculated. The serum concentrations of IL-12 were higher in diabetics than in either patients with CAD or healthy controls, and were correlated with BMI, C-peptide, insulin, HOMAIR, proinsulin and HDL serum levels. Multiple regression analysis revealed that the IL-12 serum level in type 2 diabetics primarily is dependent upon fasting proinsulin concentration. Our results demonstrate that elevated IL-12 serum levels in type 2 diabetics treated with sulphonylureas are induced especially by peripheral insulin resistance and beta cells dysfunction, as expressed by fasting serum proinsulin levels. This finding gives us hope that treatment to decrease peripheral insulin resistance and to avoid excessive proinsulin secretion might be successful in the prevention of IL-12-induced atherosclerosis.  相似文献   

3.
Zhou L  Sell H  Eckardt K  Yang Z  Eckel J 《FEBS letters》2007,581(22):4303-4308
Adipocyte-derived factors might play a role in the development of hepatic insulin resistance. Resistin was identified as an adipokine linking obesity and insulin resistance. Resistin is secreted from adipocytes in rodents but in humans it was proposed to originate from macrophages and its impact for insulin resistance has remained elusive. To analyze the role of adipokines in general and resistin as a special adipokine, we cultured the human liver cell line HepG2 with adipocyte-conditioned medium (CM) containing various adipokines such as IL-6 and MCP-1, and resistin. CM and resistin both induce insulin resistance with a robust decrease in insulin-stimulated phosphorylation of Akt and GSK3. Insulin resistance could be prevented by co-treatment with troglitazone but not by co-stimulation with adiponectin. As human adipocytes do not secrete resistin, HepG2 cells were also treated with resistin added into CM. CM with resistin addition induced stronger insulin resistance than CM alone pointing to a specific role of resistin in the initiation of hepatic insulin resistance in humans.  相似文献   

4.
CCL28 is a mucosal chemokine that attracts eosinophils and T cells via the receptors CCR3 and CCR10. Consequently, it is a candidate mediator of the pathology associated with asthma. This study examined constitutive and induced expression of CCL28 by A549 human airway epithelial-like cells. Real-time RT-PCR and ELISA of cultured cells and supernatants revealed constitutive levels of CCL28 expression to be low, whereas IL-1beta and TNF-alpha, induced significantly increased expression. Observations from induced sputum and human airway biopsies supported this. Signal transduction studies revealed that IL-1beta and TNF-alpha stimulation induced NFkappaB phosphorylation in A549 cells, but antagonist inhibition of NFkappaB p50-p65 phosphorylation correlated with marked reduction of IL-1beta or TNF-alpha induced CCL28 expression. Together these studies imply a role for CCL28 in the orchestration of airway inflammation, and suggest that CCL28 is one link between microbial insult and the exacerbation of pathologies such as asthma, through an NFkappaB-dependent mechanism.  相似文献   

5.
Nuclear factor (NF)-kappaB regulates a central common signaling for immunity and cell survival. Artemisolide (ATM) was previously isolated as a NF-kappaB inhibitor from a plant of Artemisia asiatica. However, molecular basis of ATM on NF-kappaB activation remains to be defined. Here, we demonstrate that ATM is a typical inhibitor of IkappaB kinase beta (IKKbeta), resulting in inhibition of lipopolysaccharide (LPS)-induced NF-kappaB activation in RAW 264.7 macrophages. ATM inhibited the kinase activity of highly purified IKKbeta and also LPS-induced IKK activity in the cells. Moreover, the effect of ATM on IKKbeta activity was completely abolished by substitution of Cys-179 residue of IKKbeta to Ala residue, indicating direct targeting site of ATM. ATM could inhibit IkappaBalpha phosphorylation in LPS-activated RAW 264.7 cells and subsequently prevent NF-kappaB activation. Further, we demonstrate that ATM down-regulates NF-kappaB-dependent TNF-alpha expression. Taken together, this study provides a pharmacological potential of ATM in NF-kappaB-dependent inflammatory disorders.  相似文献   

6.
Obesity is a major risk factor for insulin resistance. Resistin, an adipocyte-derived hormone-like molecule, is considered to serve as an important link between obesity and insulin resistance. However, the physiological role of resistin and the mechanism by which it neutralizes insulin action are still unclear. There are also conflicting reports that cast doubt on the cause of insulin resistance. In this study, we developed an enzyme-linked immunosorbent assay (ELISA) system for quantification of mouse resistin levels, analyzed in relation to insulin resistance. C57BL/6J mice fed high-fat diet compared with normal diet had low resistin levels (by 70%, P<0.01) in epididymal adipose tissues. Genetically obese mice, db/db and KK-A(y), had hyperinsulinemia and hyperglycemia but low resistin levels (decreases by 83 and 90%, both P<0.01) compared with C57/BL6J mice in epididymal adipose tissues. Serum resistin levels determined by Western blotting showed a similar pattern to those in adipose tissues. Resistin levels in adipose tissues correlated with serum adiponectin concentrations positively (r=0.49). Our results indicate that the novel ELISA system is suitable for measurement of resistin levels in adipose tissues. The results do not support a role for resistin in insulin resistance.  相似文献   

7.
8.
9.
The importance of cytokines in disc degeneration is well recognized. Little is known about IL-22 expression in the human intervertebral disc. We investigated IL-22 immuno-localization in disc tissue, and molecular expression and production of IL-22 by annulus cells cultured in three-dimensional (3D) culture. We examined human disc tissue using immunohistochemistry and we cultured isolated annulus cells in 3D to analyze IL-22 expression and production, and its receptor, IL-22R, in conditioned media. Ingenuity pathway analysis (IPA) also was used to identify significant gene expression networks within the molecular data. IL-22 and IL-22R were immunolocalized in many cells in the human outer and inner annulus; fewer cells exhibited localization in the nucleus. Three-dimensional culture of annulus cells demonstrated production of IL-22 in conditioned media; exposure to IL-1ß or TNF-α significantly reduced IL-22 levels. Significant decreases also were identified in conditioned media assayed for IL-22R in TNF-α treated cells. IPA analysis showed that IL-22 ranked among the top canonical pathways. We found constitutive expression and production of IL-22 and IL-22R in the disc, which expands our understanding of the effect of pro-inflammatory cytokines on IL-22 expression and production. Three-dimensional cultured annulus cells exposed to IL-1ß or TNF produced significantly lower levels of IL-22 into their conditioned media compared to levels produced by control cells. Our findings have clinical relevance because of the elevated pro-inflammatory milieu within the degenerating human disc.  相似文献   

10.
Proteinuria is an important risk factor for chronic kidney diseases (CKD). Several studies have suggested that proteinuria initiates tubulointerstitial inflammation, while the mechanisms have not been fully understood. In this study, we hypothesized whether the activation of the TLR2–MyD88–NF-κB pathway is involved in tubulointerstitial inflammation induced by proteinuria. We observed expression of TLR2, MyD88, NF-κB, as well as TNF-α and IL-6 detected by immunohistostaining, Western blotting and real-time PCR in albumin-overloaded (AO) nephropathy rats. In vitro, we observed these markers in HK-2 cells stimulated by albumin. We used TLR2 siRNA or the NF-κB inhibitor BAY 11-7082 to observe the influence of TNF-α and IL-6 expression caused by albumin overload. Finally, we studied these markers in non-IgA mesangioproliferative glomerulonephritis (MsPGN) patients with different levels of proteinuria. It was demonstrated that expression of TLR2, MyD88 and NF-κB were significantly increased in AO rats and in non-IgA MsPGN patients with high levels of proteinuria, and TNF-α and IL-6 expressions were increased after NF-κB activation. Furthermore, TNF-α and IL-6 expression was positively correlated with the level of proteinuria. Albumin-overload induced TNF-α and IL-6 secretions by the TLR2–MyD88–NF-κB pathway activation, which could be attenuated by the TLR2 siRNA or BAY 11-7082 in HK-2 cells. In summary, we demonstrated that proteinuria may exhibit an endogenous danger-associated molecular pattern (DAMP) that induces tubulointerstitial inflammation via the TLR2–MyD88–NF-κB pathway activation.  相似文献   

11.
Hasan N  Yusuf N  Toossi Z  Islam N 《FEBS letters》2006,580(10):2517-2522
Chronic inflammation associated with tumor necrosis factor (TNF)-alpha and reactive oxygen species (ROS) is the hallmark of tuberculosis. Mycobacterium tuberculosis (MTB) directly stimulates human monocytes to secrete TNF-alpha. We show the augmented expression of TNF-alpha mRNA in MTB-infected monocytes by cellular activation and ROS was suppressed by allicin in a dose-dependent manner. Also, allicin enhanced the glutathione peroxidase activity, which correlated inversely with the downregulation of ROS and TNF-alpha in MTB-infected monocytes. Hence, allicin may prove to be a valuable natural antioxidant in combating tuberculosis.  相似文献   

12.
Calcitonin gene-related peptide (CGRP) has inflammatory and immunoregulatory properties. CGRP directly inhibits IL-7 induced proliferation in developing B cells and also induces soluble factors that inhibit IL-7 responses. We identified 2 cytokines, IL-6 and TNF-alpha, induced by CGRP, that inhibit IL-7 pre-B cell responses. CGRP induction of IL-6 and TNF-alpha mRNA in long-term bone marrow cultures is transient and IL-6 or TNF-alpha inhibit IL-7 induced colony formation by 60%. When added with CGRP, colony formation is completely inhibited. TNF-alpha directly inhibits IL-7 responses in B220(+)/IgM(-) cells whereas IL-6 inhibits only colony formation with whole bone marrow. This suggests that the effect of IL-6 is mediated by other cells in the bone marrow. These results suggest that the indirect effect of CGRP on IL-7 depends in part on induction of IL-6 and TNF-alpha.  相似文献   

13.
Dynorphin 1-17 (DYN 1-17) is biotransformed rapidly to a range of fragments in rodent inflamed tissue with dynorphin 3-14 (DYN 3-14) being the most stable and prevalent. DYN 1-17 has been shown previously to be involved in the regulation of inflammatory response following tissue injury, in which the biotransformation fragments of DYN 1-17 may possess similar features. This study investigated the effects of DYN 3-14 on lipopolysaccharide (LPS)-induced nuclear factor-kappaB/p65 (NF-κB/p65) nuclear translocation and the release of pro-inflammatory cytokines interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) in differentiated THP-1 cells. Treatment with DYN 3-14 (10 nM) resulted in 35% inhibition of the LPS-induced nuclear translocation of NF-κB/p65. Furthermore, DYN 3-14 modulated both IL-1β and TNF-α release; inhibiting IL-1β and paradoxically augmenting TNF-α release in a concentration-independent manner. A number of opioids have been implicated in the modulation of the toll-like receptor 4 (TLR4), highlighting the complexity of their immunomodulatory effects. To determine whether DYN 3-14 modulates TLR4, HEK-Blue™hTLR4 cells were stimulated with LPS in the presence of DYN 3-14. DYN 3-14 (10 μM) inhibited TLR4 activation in a concentration-dependent fashion by suppressing the LPS signals around 300-fold lower than LPS-RS, a potent TLR4 antagonist. These findings indicate that DYN 3-14 is a potential TLR4 antagonist that alters cellular signaling in response to LPS and cytokine release, implicating a role for biotransformed endogenous opioid peptides in immunomodulation.  相似文献   

14.
Dendritic cells (DC) and macrophages (Mφ) are well known as important effectors of the innate immune system and their ability to produce IL-12 indicates that they possess the potential of directing acquired immunity toward a Th1-biased response. Interestingly, the intracellular parasite Leishmania has been shown to selectively suppress Mφ IL-12 production and are DC the principal source of this cytokine. The molecular details of this phenomenon remain enigmatic. In the present study we examined the effect of Leishmania mexicana lipophosphoglycan (LPG) on the production of IL-12, TNF-α, and IL-10 and nuclear translocation of NF-κB. The results show that LPG induced more IL-12 in human DC than in monocytes. This difference was due in part to nuclear translocation of NF-κB, since LPG induced more translocation in DC than in monocytes. These results suggest that Leishmania LPG impairs nuclear translocation of NF-κB in monocytes with the subsequent decrease in IL-12 production.  相似文献   

15.
The production of eotaxin, which is a critical mediator for airway inflammation, is inhibited by IFN-gamma. Here, we investigated the precise mechanisms underlying IFN-gamma-dependent inhibition of eotaxin production using mouse embryonic fibroblasts (MEF). MEF produced high levels of eotaxin in STAT6-dependent manner when they were cultured with both IL-4 and TNF-alpha. However, the eotaxin production by MEF was strongly inhibited by addition of IFN-gamma. Western-blotting analysis demonstrated that IFN-gamma downmodulated STAT6 phosphorylation induced by IL-4 and TNF-alpha. Moreover, IFN-gamma did not exhibit its inhibitory effect on both STAT6-phosphorylation and eotaxin production in MEF obtained from deficient mice in STAT1, a key molecule of IFN-gamma signaling. We also demonstrated that SOCS-1, a potent inhibitory molecule of IL-4 signaling, was induced by IFN-gamma in STAT1-dependent manner. This indicated that SOCS-1 might be involved in IFN-gamma-mediated STAT1-dependent inhibition of eotaxin production. In SOCS-1(-/-) MEF, IFN-gamma inhibited neither STAT6 phosphorylation nor eotaxin production induced by IL-4 and TNF-alpha. Conversely, retroviral transduction of SOCS-1 into MEF inhibited STAT6 phosphorylation and eotaxin production induced by IL-4 and TNF-alpha, in the absence of IFN-gamma. Thus, we demonstrated that IFN-gamma-induced inhibition of STAT6 phosphorylation and eotaxin production were mediated by SOCS-1 induced in STAT1-dependent manner.  相似文献   

16.
LPS induces the production of inflammatory cytokines via the stimulation of Toll-like receptors. In this study, we demonstrated that a soluble secreted form of the ST2 gene product (ST2), a member of the interleukin-1 receptor family, suppressed the production of IL-6 in an LPS-stimulated human monocytic leukemia cell line, THP-1. Immunofluorescence confocal microscopy revealed the binding of ST2 to the surface of the THP-1 cells, in which ST2 led to decreased binding of nuclear factor-kappaB to the IL-6 promoter. Furthermore, the degradation of IkappaB in the cytoplasm after LPS stimulation was reduced by pretreatment with ST2. These results demonstrated that ST2 negatively regulates LPS-induced IL-6 production via the inhibition of IkappaB degradation in THP-1 cells.  相似文献   

17.
We detected the expression of IL-12 p40/p35 mRNA by semi-quantitative RT-PCR and silver staining, and studied the molecular interaction between the IL-12 expression and the NF-kB activation induced by LPS and IFN-γ/LPS in murine peritoneal suppressor macrophages (MPSMs). It was found that IFN-γ strongly enhanced the LPS-induced IL-12 p40 and p35 mRNA expression. Both p40 and p35 mRNA levels were approximately equal. IFN-γ also greatly promoted the LPS-induced secretion of IL-12 p70 in MPSMs. The Proteasome Inhibitor I (PSI) could block the expres-sion of IL-12 p40 and p35 mRNA, and the degradation of IkBα induced by LPS or LPS/IFN-γ. EM-SA showed that LPS could augment the NF-kB binding activity to p40 promoter DNA. However, IFN-γ could neither enhance the LPS-induced NF-kB activity nor promote the degradation of IkBα. Taken together, the data suggest: (i) IFN-γ/LPS could strongly induce the expression of IL-12 p40 and p35 mRNA; both the expression levels were equal; this phenomenon coincided with the high-level secretion of IL-12 p70 induced by IFN-γ/LPS; (ii) NF-kB signal pathway is essential for IFN-γ/LPS to induce IL-12 mRNA expression; (iii) by blocking the degradation of IkB, the PSI sup-presses the IL-12 p40/p35 mRNA expression induced by LPS and IFN-γ/LPS; (iv) NF-kB signal may not be involved in the mechanism by which IFN-γ enhanced the expression of the LPS-induced IL-12 p40/p35 mRNA.  相似文献   

18.
p53 is a key regulator in cell apoptosis, and cancer cells deficient in p53 expression fail to respond to chemotherapy. Here we show that effective Doxorubicin (DOX)-induced apoptosis is p53-dependent. However, an alternative treatment of DOX/TNF-alpha/DOX restored sensitivity of p53-deficient cells to DOX-induced apoptosis. Treatment of cells with TNF-alpha resulted in a decrease of p21 (waf1/cip1/sdi1) expression following second dose of DOX. In previous work, we demonstrated that p21 suppressed DOX-induced apoptosis via its (cyclin-dependent kinase) CDK-binding and CDK-inhibitory activity. Thus, we propose that TNF-alpha enhances the anti-cancer effect of DOX through suppressing the anti-apoptotic activity of p21, and that a combined treatment TNF-alpha/Dox is an effective chemotherapeutic strategy for p53-deficient cancers.  相似文献   

19.
Induction and localization of NOD2 protein in human endothelial cells   总被引:3,自引:0,他引:3  
  相似文献   

20.
Mitochondrial dysfunction has been reported in skeletal muscle of obese subjects and of type 2 diabetic patients. Reduced mitochondrial mass and defective activity have been proposed to explain this dysfunction. Alterations in mitochondrial function may be crucial to explain the metabolic changes and insulin resistance that characterize both obesity and type 2 diabetes. Consequently, the identification of the primary mechanisms involved is of great relevance.Mitochondrial dynamics refers to the movement of mitochondria along the cytoskeleton and also to the regulation of mitochondrial morphology and distribution, which depend on fusion and fission events. In recent years, some of the proteins that participate in mitochondrial fusion and fission have been identified in mammalian cells. Recent evidence indicates that proteins participating in these processes are also involved in metabolism. The mitochondrial fusion protein mitofusin 2 stimulates respiration, substrate oxidation and the expression of subunits that participate in respiratory complexes in cultured cells. In this regard, skeletal muscle of obese subjects and of type 2 diabetic patients shows reduced mitofusin 2 expression. Therefore, alterations in the activity of the proteins involved in mitochondrial dynamics, and particularly mitofusin 2, may participate in the reduced mitochondrial function present in skeletal muscle in obesity and in type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号