首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
植物金属蛋白酶Ft SH基因家族在拟南芥(Arabidopsis thaliana)中有12个成员,目前各基因的功能还不清楚。该文利用细胞生物学和遗传学方法初步分析了拟南芥FtSH4在叶片衰老中的功能。ftsh4-4突变体叶片中H_2O_2含量及细胞死亡率增加,叶绿素含量降低;此外,突变体中过氧化物酶基因表达上调,过氧化物酶活性增加,出现早衰表型。外源抗氧化剂As A、内源和外源生长素能够通过降低ftsh4-4体内H_2O_2含量、过氧化物酶基因的表达及过氧化物酶活性,恢复ftsh4-4叶片的衰老表型。ftsh4-4突变体中生长素响应因子基因ARF2和ARF7上调表达,外源生长素和抗氧化剂能够降低ARF2和ARF7的表达,并且ARF2突变能够降低ftsh4-4的H_2O_2含量并恢复其早衰表型。以上结果表明,FtSH4基因通过生长素与活性氧在调控植物叶片衰老中起重要作用。  相似文献   

2.
Reactive Oxygen Species and Regulation of Gene Expression   总被引:15,自引:0,他引:15  
  相似文献   

3.
1. We have investigated the role of reactive oxygen species (ROS) in cell death induced by ischemia or application of the excitatory amino acid agonist, N-methyl-D-aspartate (NMDA) or kainate (KA), in acutely isolated rat cerebellar granule cell neurons, studied by flow cytometry. Various fluorescent dyes were used to monitor intracellular calcium concentration, ROS concentration, membrane potential, and viability in acutely dissociated neurons subjected to ischemia and reoxygenation alone, NMDA or kainate alone, and ischemia and reoxygenation plus NMDA or kainate.2. With ischemia followed by reoxygenation, ROS concentrations rose slightly and there was only a modest increase in cell death after 60 min.3. When NMDA or kainate alone was applied to the cells there was a large increase in ROS and in intracellular calcium concentration but only a small loss of cellular viability. However, when NMDA or kainate was applied during the reoxygenation period there was a large loss of viability, accompanied by membrane depolarization, but the elevations of ROS and intracellular calcium concentration were not greater than seen with the excitatory amino acids alone.4. These observations indicate that other factors beyond ROS and intracellular calcium concentration contribute to cell death in cerebellar granule cell neurons.  相似文献   

4.
活性氧参与一氧化氮诱导的神经细胞凋亡   总被引:5,自引:0,他引:5       下载免费PDF全文
采用激光共聚焦成像技术,用氧化还原敏感的特异性荧光探针(DCFH-DA和DHR123)直接研究了一氧化氮供体S-亚硝基-N-乙酰基青霉胺(SNAP)诱导未成熟大鼠小脑颗粒神经元凋亡过程中的细胞胞浆、线粒体中活性氧水平的变化,发现神经细胞经0.5 mmol/L SNAP处理1 h后,细胞胞浆及线粒体中活性氧水平大大增加.一氧化氮清除剂血红蛋白能够有效抑制细胞胞浆、线粒体中活性氧的产生,防止细胞凋亡.外源性谷胱甘肽对细胞也具有良好的保护作用,而当细胞中谷胱甘肽的合成被抑制后,一氧化氮的神经毒性大大增强.实验结果表明一氧化氮通过促进神经细胞产生内源性活性氧而启动细胞凋亡程序,而谷胱甘肽可能是重要的防止一氧化氮引发神经损伤的内源性抗氧化剂.  相似文献   

5.
以烟草悬浮细胞BY-2(Nicotiana tabacum L.cv.Bright Yellow-2)为材料,探讨了在铜离子胁迫下植物细胞死亡发生过程中胞外H2O2及NADPH氧化酶所扮演的角色。实验结果表明,随着外源CuCl2浓度的上升(从0~700 μmol·L-1),细胞死亡水平不断上升,且胞外H2O2的水平也不断增加。在300 μmol·L-1的CuCl2诱导细胞死亡的过程中,加入H2O2清除剂N-N-二甲基硫脲(DMTU)降低了胞外CuCl2胁迫下H2O2含量增加的同时也降低了细胞死亡水平的上升,这一观察表明了铜离子胁迫所导致的细胞死亡的发生和胞外H2O2的增加有关。进一步的研究表明,300 μmol·L-1 CuCl2的胁迫导致了NADPH氧化酶活性的显著性上升,而加入NADPH氧化酶的抑制剂(二亚苯基碘,DPI,)则降低了CuCl2胁迫所导致的细胞死亡和胞外H2O2含量的上升。上述结果表明,胞外H2O2和NADPH氧化酶参与了CuCl2对植物细胞死亡的诱导作用。  相似文献   

6.
7.
Fusarium infection of bananas is a global problem that threatens the production of bananas. This study looks at the effects of the infection upon the reactive oxygen species (ROS) system, as well as the induced antioxidant properties in the roots, stems, leaves and fruits. Results show that there is a greater amount of damage in infected tissue samples as opposed to non‐infected. The damage was observed to be higher in the root samples. ROS assays were divided into two classes: ROS assays and ROS‐scavenging assays. Of the ROS assays, lipoxygenase was observed to be higher in the infected samples, while peroxidase (POD) and polyphenol oxidase (PPO) were significantly higher in infected stem, leaf and fruit samples. Among root samples, there was no significant difference in POD activity and PPO was lower in infected samples. Induction of ROS is important for the hypersensitive response (HR) to function properly. The ROS‐scavenging enzymes, namely ascorbate peroxidase, guaiacol peroxidase and superoxide dismutase, exhibited higher levels in the infected tissue. This is most likely to counter the build‐up of the ROS enzymes and to prevent further cell death. The increase in ROS‐scavenging assays also correlates with higher antioxidant properties as antioxidants play a critical role in regulating the HR free radicals.  相似文献   

8.
胡海涛  钱婷婷  杨玲 《植物学报》2022,57(3):320-326
活性氧(reactive oxygen species, ROS)是植物体内的一把“双刃剑”。ROS作为信号分子在植物生命活动中发挥关键作用,但ROS过量积累会对生物大分子造成氧化损伤。准确测定ROS含量对于评估植物细胞内的氧化还原状态至关重要。由于植物体内ROS各组分半衰期短且反应活性强,定性定量检测较为困难。因此,选择合适的检测方法以提高检测的时空准确性非常重要。目前,荧光分析法因其具有灵敏度高、选择性好、检出限低和直观性强等优点,受到研究人员的广泛关注。该文详细描述基于流式细胞仪和激光共聚焦显微镜,利用2′,7′-二氯二氢荧光素二乙酸酯(H2DCFDA)荧光探针检测水稻(Oryzasativa)体内ROS水平和时空分布的操作流程及注意事项。该技术也可用于直接检测拟南芥(Arabidopsis thaliana)、玉米(Zea mays)和大豆(Glycine max)等模式植物组织中ROS的水平和分布。  相似文献   

9.
Nitric oxide (NO) plays important roles in diverse physiological processes In plants. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in plant cells. This review is focused on NO synthesis and the functions of NO in plant responses to abiotic environmental stresses. Abiotic stresses mostly induce NO production in plants. NO alleviates the harmfulness of reactive oxygen species, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions.  相似文献   

10.
Generation of O2 and H2O2 as well as the activities of superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, dehydroascorbate reductase and ascorbate content were studied in tomato cell cultures in response to fusaric acid – a nonspecific toxin of phytopathogenic Fusarium species. Toxin treatment resulted in decreased cell viability which was preceded by culture medium alkalinization up to 0.65 pH unit and enhanced extracellular O2 production. The H2O2 level was not significantly affected. In toxin-treated cultures, a transient, significant increase occurred in intracellular superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase activities. Fusaric acid-induced ascorbate turnover modulation led to up to a twofold increase in dehydroascorbic acid accumulation, and a decrease in the associated ascorbate redox ratio. It was concomitant with a significant decrease in dehydroascorbate reductase activity. These results support previous observations that the pro- and anti-oxidant systems are involved in response to fusaric acid treatment although differential response of H2O2 and its metabolism-related enzymes between the whole leaf and cell culture assays was found.  相似文献   

11.
Reactive oxygen species (ROS) have emerged as important signaling molecules in the regulation of various cellular processes. They can be generated by the mitochondrial electron transport chain in mitochondria and activation of polymorphonuclear leukocytes (PMN) during inflammatory conditions. Excessive generation of ROS may result in attack of and damage to most intracellular and extracellular components in a living organism. Moreover, ROS can directly induce and/or regulate apoptotic and necrotic cell death. Periodontal pathologies are inflammatory and degenerative diseases. Several forms of periodontal diseases are associated with activated PMN. Damage of tissues in inflammatory periodontal pathologies can be mediated by ROS resulting from the physiological activity of PMN during the phagocytosis of periodontopathic bacteria.__________Translated from Biokhimiya, Vol. 70, No. 6, 2005, pp. 751–761.Original Russian Text Copyright © 2005 by Canakci, Cicek, Canakci.  相似文献   

12.
一氧化氮对渗透胁迫下小麦种子萌发及其活性氧代谢的影响   总被引:37,自引:1,他引:37  
一氧化氮供体硝普钠(Sodium nitroprusside,SNP)能明显地促进渗透胁迫下小麦(Triticum aestivum L.)种子萌发、胚根和胚芽伸长,提高萌发过程中淀粉酶和内肽酶的活力,加速贮藏物质的降解:胁迫解除后,仍能使种子维持较高的活力。此外,SNP还能显著诱导渗透胁迫下CAT、APX活力的上升和脯氨酸含量积累,抑制LOX活力,从而提高渗透胁迫下小麦种子萌发过程中抗氧化能力。进一步研究还发现,SNP诱导切胚半粒小麦种子萌发早期(6h)的淀粉酶活力上升可能与GA3无直接关系。  相似文献   

13.
一氧化氮供体硝普钠(Sodium nitroprusside,SNP)能明显地促进渗透胁迫下小麦(Triticum aestivum L.)种子萌发、胚根和胚芽伸长,提高萌发过程中淀粉酶和内肽酶的活力,加速贮藏物质的降解;胁迫解除后,仍能使种子维持较高的活力.此外,SNP还能显著诱导渗透胁迫下CAT、APX活力的上升和脯氨酸含量积累,抑制LOX活力,从而提高渗透胁迫下小麦种子萌发过程中抗氧化能力.进一步研究还发现,SNP诱导切胚半粒小麦种子萌发早期(6h)的淀粉酶活力上升可能与GA3无直接关系.  相似文献   

14.
Abstract: Enhanced production of superoxide anion (O2) is considered to play a pivotal role in the pathogenesis of CNS neurons. Here, we report that O2 generated by xanthine (XA) + xanthine oxidase (XO) triggered cell death associated with nuclear condensation and DNA fragmentation in cerebellar granule neuron. XA + XO induced significant increases in amounts of intracellular reactive oxygen species (ROS) before initiating loss of cell viability, as determined by measurement of 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate, di(acetoxymethyl ester) (C-DCDHF-DA) for O2 and other ROS and hydroethidine (HEt) specifically for O2 by using fluorescence microscopy and flow cytometry. Catalase, but not superoxide dismutase (SOD), significantly protected granule neurons from the XA + XO-induced cell death. Catalase effectively reduced C-DCDHF-DA but not HEt fluorescence, whereas SOD reduced HEt but not C-DCDHF-DA fluorescence, indicating that HEt and C-DCDHF-DA fluorescence correlated with O2 and hydrogen peroxide, respectively. The NMDA antagonist MK-801 prevented the death. XA + XO induced an increase in l -glutamate release from cerebellar granule neurons. These results indicate that elevation of O2 induces cell death associated with increasing ROS production in cerebellar granule neurons and that XA + XO enhanced release of l -glutamate.  相似文献   

15.
休眠是植物种子对环境变化的适应机制,其机理至今未完全清楚阐明。前期对种子休眠机制的研究主要集中在激素调节上,近期的研究结果表明,一氧化氮(nitric oxide,NO)参与打破种子的休眠,并与其所引起的种子中活性氧的变化有关。本文简要综述活性氮(reactive nitrogen species,RNS)、活性氧(reactive oxygen species,R0s)和植物激素在种子休眠解除中的作用及相互关系研究进展。  相似文献   

16.
在常温下用不同浓度的外源H2O2(0~20 mmol·L-1)预处理水稻幼苗,再进行12 h 6℃低温胁迫,根据幼苗相对含水量和质膜相对透性筛选最佳外源H2O2处理浓度,并分析最佳外源H2O2浓度下幼苗的渗透调节物质和活性氧相关指标的变化.结果表明:(1)0~8 mmol·L-1 H2O2预处理可以增加水稻幼苗的相对含水量,降低其质膜相对透性,并以4 mmol·L-1 H2O2的效果最佳.(2)低温胁迫后,与对照组相比,4 mmol·L-1外源H2O2预处理降低了水稻幼苗萎蔫程度,并使其总呼吸速率、交替途径容量都有增加,同时还抑制了丙二醛的含量,增加了可溶性糖、可溶性蛋白质和脯氨酸的含量.(3)外源H2O2预处理对水稻幼苗的内源H2O2含量以及O(-)/(·)2产生速率没有显著影响.研究发现,外源H2O2可以通过提高呼吸速率、降低脂质过氧化程度、增加碳氮代谢来有效增强水稻幼苗的抗寒性,它可能以一种独立于内源活性氧系统之外的方式发挥作用.  相似文献   

17.
The relationship between hydrogen peroxide (H2O2) and endopeptidase(EP) in wheat (Triticum aestivum L. cv. Yanmai 158) leaves was studied during natural and artificial aging. Rapid accumulation of endogenous H2O2 and marked increase of EP activity were observed during the later phase of aging. A new EP isozyme with higher activity was detected by electrophoresis on polyacrylamide gels containing denatured heamoglobin. With the increase of exogenous H2O2, the activity of EP increased at first and then decreased.  相似文献   

18.
19.
Abstract: The ability of glutamate to stimulate generation of intracellular oxidant species was determined by microfluorescence in cerebellar granule cells loaded with the oxidant-sensitive fluorescent dye 2,7-dichlorofluorescin (DCF). Exposure of cells to glutamate (10 µM) produced a rapid generation of oxidants that was blocked ~70% by MK-801 (a noncompetitive NMDA-receptor antagonist). To determine if nitric oxide (NO) or reactive oxygen species (ROS) contributed to the oxidation of DCF, cells were treated with compounds that altered their generation. NO production was inhibited with NG-nitro-l -arginine methyl ester (l -NAME) (nitric oxide synthase inhibitor) and reduced hemoglobin (NO scavenger). Alternatively, cells were incubated with superoxide dismutase (SOD) and catalase, which selectively metabolize O2 andH2O2. Concurrent inhibition of O2 and NO production nearly abolished intracellular oxidant generation. Pretreatment of cells with either chelerythrine (1 µM, protein kinase C inhibitor) or quinacrine (5 µM, phospholipase A2 inhibitor) before addition of glutamate also blocked oxidation of DCF. Generation of oxidants by glutamate was significantly reduced by incubating the cells in Ca2+-free buffer. In cytotoxicity studies, a positive correlation was observed between glutamate-induced death and oxidant generation. Glutamate-induced cytotoxicity was blocked by MK-801 and attenuated by treatment with l -NAME, chelerythrine, SOD, or quinacrine. It is concluded that glutamate induces concurrent generation of NO and ROS by activation of both NMDA receptors and non-NMDA receptors through a Ca2+-mediated process. Activation of NO synthase and phospholipaseA2 contribute significantly to this response. It is proposed that simultaneous generation of NO and ROS results in formation of peroxynitrite, which initiates the cellular damage.  相似文献   

20.
生物体内的活性氧(Reactive oxygen species,ROS)过量引起氧化应激将导致脂质、DNA和蛋白质氧化损伤,从而引发一系列生理和病理反应。绿茶中茶多酚的主要成分表没食子儿茶素没食子酸酯((-)-Epigallocatechin-3-gallate,EGCG)具有强抗氧化性,能有效抑制ROS。本文简要介绍了生物体内ROS的来源和EGCG的特性及其对ROS的抑制作用。通过检测玫瑰红水溶液在光敏化时所产生~1O_2的1 270 nm近红外发光,分析比较了EGCG和迭代钠(NaN_3)对~1O_2发光的淬灭过程,发现EGCG对~1O_2的淬灭效果比NaN_3更好,为EGCG淬灭~1O_2的定量研究提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号