首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proliferation of epithelial cells must be spatiotemporally regulated to maintain the organization of epithelial sheets. Here we show that the IQGAP family, comprising IQGAP1, 2 and 3, underlies lateral cell-cell contacts of epithelial cells. Of the three proteins, IQGAP3 is unique in that its expression is specifically confined to proliferating cells. Knockdown of IQGAP3 in cultured epithelial cells caused inhibition of proliferation and ERK activity. When exogenously expressed in quiescent cells, IQGAP3 was capable of inducing cell-cycle re-entry, which was completely inhibited by the MEK inhibitor U0126. Thus, IQGAP3 is necessary and sufficient for driving cell proliferation and ERK acts downstream of IQGAP3. Furthermore, IQGAP3 specifically interacted with the active, GTP-bound form of Ras, and in IQGAP3 knockdown cells, the activity of Ras, but not of other small GTPases, was inhibited. Thus, IQGAP3 regulates the promotion of cell proliferation through Ras-dependent ERK activation.  相似文献   

2.
Wu W  Sun Z  Wu J  Peng X  Gan H  Zhang C  Ji L  Xie J  Zhu H  Ren S  Gu J  Zhang S 《PloS one》2012,7(1):e29920
c-Src activates Ras-MAPK/ERK signaling pathway and regulates cell migration, while trihydrophobin 1 (TH1) inhibits MAPK/ERK activation and cell migration through interaction with A-Raf and PAK1 and inhibiting their kinase activities. Here we show that c-Src interacts with TH1 by GST-pull down assay, coimmunoprecipitation and confocal microscopy assay. The interaction leads to phosphorylation of TH1 at Tyr-6 in vivo and in vitro. Phosphorylation of TH1 decreases its association with A-Raf and PAK1. Further study reveals that Tyr-6 phosphorylation of TH1 reduces its inhibition on MAPK/ERK signaling, enhances c-Src mediated cell migration. Moreover, induced tyrosine phosphorylation of TH1 has been found by EGF and estrogen treatments. Taken together, our findings demonstrate a novel mechanism for the comprehensive regulation of Ras/Raf/MEK/ERK signaling and cell migration involving tyrosine phosphorylation of TH1 by c-Src.  相似文献   

3.
The Ras GTPase-activating-like protein IQGAP1 is a multimodular scaffold that controls signaling and cytoskeletal regulation in fibroblasts and epithelial cells. However, the functional role of IQGAP1 in T cell development, activation, and cytoskeletal regulation has not been investigated. In this study, we show that IQGAP1 is dispensable for thymocyte development as well as microtubule organizing center polarization and cytolytic function in CD8(+) T cells. However, IQGAP1-deficient CD8(+) T cells as well as Jurkat T cells suppressed for IQGAP1 were hyperresponsive, displaying increased IL-2 and IFN-γ production, heightened LCK activation, and augmented global phosphorylation kinetics after TCR ligation. In addition, IQGAP1-deficient T cells exhibited increased TCR-mediated F-actin assembly and amplified F-actin velocities during spreading. Moreover, we found that discrete regions of IQGAP1 regulated cellular activation and F-actin accumulation. Taken together, our data suggest that IQGAP1 acts as a dual negative regulator in T cells, limiting both TCR-mediated activation kinetics and F-actin dynamics via distinct mechanisms.  相似文献   

4.
Cells form stress granules (SGs), in response to unfavorable environments, to avoid apoptosis, but it is unclear whether and how SG formation and cellular apoptosis are coordinately regulated. In this study we detected the small GTPase, Ras homolog gene family member A (RhoA), and its downstream kinase, Rho-associated, coiled-coil containing protein kinase 1 (ROCK1), in SG, and found that their stress-induced activities were important for SG formation and subsequent global translational repression. Importantly, only activated RhoA and ROCK1 were sequestered into SG. Sequestration of activated ROCK1 into SG prevented ROCK1 from interacting with JNK-interacting protein 3 (JIP-3) and its activation of c-Jun N-terminal kinase (JNK), a pathway triggering apoptosis, thereby protecting cells from apoptosis. This study identifies a specific signaling pathway, mediated by RhoA and ROCK1, which determines cell fate by promoting SG formation or initiating apoptosis during stress.  相似文献   

5.
IGFBP7 as an early biomarker has been used to identify patients at risk of developing acute kidney injury (AKI). Nevertheless, its role in AKI remains obscure. The aim of our study is to determine the role and mechanism of IGFBP7 in lipopolysaccharide (LPS)-induced HK-2 cells in vitro and on sepsis-induced AKI by cecal ligation and puncture (CLP) in vivo. Here, we identified that IGFBP7 expression was increased in patients with AKI and HK-2 cells with LPS (1, 2, and 5 μg/mL) induction. HK-2 cells with LPS induction showed cell cycle arrest at G1-G0 phases and cell apoptosis and activated ERK1/2 parallel with the changes in the proteins belonging to the ERK1/2 pathway, including Cyclin D1, P21, Bax, and Bcl-2, which were inhibited by the IGFBP7 knockdown. Moreover, IGFBP7 overexpression significantly induced cell cycle arrest at G1-G0 phases and cell apoptosis of HK-2 cells, which were inhibited by PD98509, an ERK1/2 signaling inhibitor. IGFBP7 knockdown effectively alleviated the severity of the renal injury, evidenced by decreases in the urinary levels of creatinine, blood urea nitrogen, and albumin, cell apoptosis, and activation of ERK1/2 signaling in CLP mice. Taken together, our findings indicate that IGFBP7 regulates sepsis-induced AKI through ERK1/2 signaling.  相似文献   

6.
7.
IQGAP1 binds ERK2 and modulates its activity   总被引:6,自引:0,他引:6  
  相似文献   

8.
9.
The endocannabinoid (eCB) system regulates emotion, stress, memory and cognition through the cannabinoid type 1 (CB1) receptor. To test the role of CB1 signaling in social anxiety and memory, we utilized a genetic knockout (KO) and a pharmacological approach. Specifically, we assessed the effects of a constitutive KO of CB1 receptors (CB1KOs) and systemic administration of a CB1 antagonist (AM251; 5 mg/kg) on social anxiety in a social investigation paradigm and social memory in a social discrimination test. Results showed that when compared with wild‐type (WT) and vehicle‐treated animals, CB1KOs and WT animals that received an acute dose of AM251 displayed anxiety‐like behaviors toward a novel male conspecific. When compared with WT animals, KOs showed both active and passive defensive coping behaviors, i.e. elevated avoidance, freezing and risk‐assessment behaviors, all consistent with an anxiety‐like profile. Animals that received acute doses of AM251 also showed an anxiety‐like profile when compared with vehicle‐treated animals, yet did not show an active coping strategy, i.e. changes in risk‐assessment behaviors. In the social discrimination test, CB1KOs and animals that received the CB1 antagonist showed enhanced levels of social memory relative to their respective controls. These results clearly implicate CB1 receptors in the regulation of social anxiety, memory and arousal. The elevated arousal/anxiety resulting from either total CB1 deletion or an acute CB1 blockade may promote enhanced social discrimination/memory. These findings may emphasize the role of the eCB system in anxiety and memory to affect social behavior .  相似文献   

10.
K562 cells can be used as a model of erythroid differentiation on being induced by hemin. We found that the level of annexin1 gene expression was notably increased during this indicated process. To test the hypothesis that annexin1 can regulate erythropoiesis, K562 cell clones in which annexin1 was stably increased and was knocked down by RNAi were established, respectively. With analysis by hemoglobin quantification, benzidine staining, and marker gene expression profile determination, we confirmed that hemin-induced erythroid differentiation of K562 cells was modestly stimulated by overexpression of annexin1 while it was significantly blocked by knock down of annexin1. Further studies revealed that the mechanisms of annexin1 regulation of the erythroid differentiation was partially related to the increased ERK phosphorylation and expression of p21(cip/waf), since specific inhibitor of MEK blocked the function of annexin1 in erythroid differentiation. We concluded that annexin1 exerted its erythropoiesis regulating effect by ERK pathway.  相似文献   

11.
IQGAP1, an essential scaffolding protein, forms a complex with the hyaluronan receptor CD44. In this study, we have examined the importance of IQGAP1 for hyaluronan-mediated fibroblast migration and proliferation. Hyaluronan induced formation of F-actin fibers and focal adhesions, which was dependent on IQGAP1. IQGAP1 was required for hyaluronan- but not for platelet-derived growth factor (PDGF)-BB-induced cell migration, and was required for both hyaluronan- and PDGF-BB-mediated fibroblast proliferation, but not for proliferation induced by 10% fetal bovine serum. Depletion of IQGAP1 suppressed hyaluronan-induced activation of Rac1 and enhanced the activation of RhoA. Taken together, these findings indicate important roles for IQGAP1 in hyaluronan-stimulated migration and proliferation of fibroblasts.  相似文献   

12.
Podocyte injury may contribute to the pathogenesis of diabetic nephropathy (DN), but the underlying mechanism of hyperglycemia induced podocyte damage is not fully understood. The Ras GTPase-activating-like protein IQGAP1 is associated to the slit diaphragm proteins and the actin cytoskeleton in podocyte. Here, we studied IQGAP1 expression alterations in human DN biopsies and extracellular signal-regulated kinase (ERK)-dependent pathways of IQGAP1 expression in podocyte under high glucose (HG) media. In vivo, analysis of renal biopsies from patients with DN revealed a significant reduction in IQGAP1 expression compared to controls. In vitro, IQGAP1 mRNA and protein expression were observed to decline under HG media at 48 h. But phosphorylation of ERK1/2 was activated under HG media at 24 h and 48 h. However, HG-induced downregulation of IQGAP1 protein was attenuated by specific ERK1/2 activation inhibitor PD98059. Taken together, these results highlight the importance of IQGAP1 in DN, and suggest that IQGAP1 expression in podocyte under HG media is modulated by the ERK1/2 pathway, which may lead to the future development of therapies targeting IQGAP1 dysfunction in podocytes in DN.  相似文献   

13.
Extracellular ATP exerts both short-term and long-term effects in the CNS by stimulating cell-surface purinergic receptors. Here we have examined the effect of purinergic receptor activation on N-cadherin expression, a calcium-dependent cell adhesion molecule involved in many processes, including glia-glia and axon-glia interactions. When primary cultures of rat cortical astrocytes were treated with ATP, N-cadherin protein expression increased in a time- and concentration-dependent manner. In addition, ATP treatment caused an increase in N-cadherin immunoreactivity in both the cytoplasm and on the cell surface membrane. Interestingly, experiments with cycloheximide revealed that relocalization of N-cadherin to the cell surface membrane were independent of protein synthesis. The ATP-induced increase in N-cadherin protein expression was blocked by reactive blue 2 and 8-(p-sulfophenyl)-theophylline, suggesting involvement of both P2 and P1 purinergic receptors, respectively. In addition, N-cadherin expression was partially blocked when signaling from purinergic receptors to extracellular signal regulated protein kinase or Akt was inhibited by 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene or wortmannin, respectively. By using an in vitro model of traumatic CNS injury, we found that N-cadherin expression was increased when astrocytes were subjected to rapid and reversible mechanical strain. The findings presented here demonstrate a role for extracellular ATP, purinergic receptors and protein kinase signaling in regulating N-cadherin expression and suggest a role for this mechanism in cell-cell interactions.  相似文献   

14.
Ubiquitin-specific protease 7 (USP7) is one of the deubiquitinating enzymes (DUBs) in the ubiquitin-specific protease (USP) family. It is a key regulator of numerous cellular functions including immune response, cell cycle, DNA damage and repair, epigenetics, and several signaling pathways. USP7 acts by removing ubiquitin from the substrate proteins. USP7 also binds to a specific binding motif of substrate proteins having the [P/A/E]-X-X-S or K-X-X-X-K protein sequences. To date, numerous substrate proteins of USP7 have been identified, but no studies have been conducted using the binding motif that USP7 binds. In the current study, we analyzed putative substrate proteins of USP7 through the [P/A/E]-X-X-S and K-X-X-X-K binding motifs using bioinformatics tools, and confirmed that Raf-1 is one of the substrates for USP7. USP7 binds to the Pro-Val-Asp-Ser (PVDS) motif of the conserved region 2 (CR2) which contains phosphorylation sites of Raf-1 and decreased M1-, K6-, K11-, K27-, K33-, and K48-linked polyubiquitination of Raf-1. We further identified that the DUB activity of USP7 decreases the threonine phosphorylation level of Raf-1 and inhibits signaling transduction through Raf activation. This regulatory mechanism inhibits the activation of the ERK1/2 signaling pathway, thereby inhibiting the G2/M transition and the cell proliferation of lung adenocarcinoma cells. In summary, our results indicate that USP7 deubiquitinates Raf-1 and is a new regulator of the ERK1/2 signaling pathway in lung adenocarcinoma.Subject terms: Ubiquitylation, Non-small-cell lung cancer, Protein-protein interaction networks  相似文献   

15.
Bone formation in the vertebrate skeleton occurs via the processes of endochondral and membranous ossification. Bone matrices contain chondroitin sulfate (CS) chains that regulate endochondral ossification. However, the function of CS in membranous ossification is unclear. Here, using preosteoblastic MC3T3-E1 cells we demonstrate that chondroitin sulfate-E (CS-E) promotes osteoblast differentiation by binding to both N-cadherin and cadherin-11. Differentiated MC3T3-E1 cells exhibited an increase in the total amount of CS and of E-disaccharide units of CS over time. In addition, CS-E polysaccharide, but not CS-A polysaccharide, bound to N-cadherin and cadherin-11 and enhanced osteoblast differentiation. In contrast, osteoblast differentiation was inhibited in chondroitinase ABC-digested MC3T3-E1 cells. Notably, CS-E polysaccharide and hexasaccharide activated intracellular signaling during osteoblast differentiation in non-contacting MC3T3-E1 cells, decreased ERK1/2 phosphorylation, and activated Smad3 and Smad1/5/8; these reactions were blocked by neutralizing antibodies against N-cadherin or cadherin-11, even though cell-cell adhesion is reported to be required for initiation of MC3T3-E1 cell differentiation. Furthermore, CS-E-unit overexpression in MC3T3-E1 cells increased adhesion of the cells to N-cadherin and cadherin-11, and promoted osteoblast differentiation. Collectively, these results suggest that CS-E is a selective ligand for the potential CS receptors, N-cadherin and cadherin-11, leading to osteoblast differentiation of MC3T3-E1 cells.  相似文献   

16.
17.
Regulating ERK activity is essential for normal cell proliferation to occur. In mammals and most vertebrates ERK activity is provided by ERK1 and ERK2 that are highly similar, ubiquitously expressed and share activators and substrates. By combining single and double silencings of ERK1 and ERK2 we recently demonstrated that the apparent dominant role of ERK2 to regulate cell proliferation was due to its markedly higher expression level than ERK1. The contribution of ERK1 was revealed when ERK2 activation was clamped to avoid compensating over-activation of ERK2. We found no evidences in the literature for insulated isoform-specific modules in the Ras/Raf/MEK signaling cascade that could activate specifically ERK1 or ERK2. Obviously in frogs all signal integration and fine modulation provided by three Ras and three Raf isoforms is conducted by only one MEK and one ERK isoform. In mammals, ERK1 and ERK2 display similar specific activities and are activated respectively to their expression levels. After integrating signals from Ras, Raf and MEK isoforms, ERK1 and ERK2 regulate positively cell proliferation according to their expression levels.  相似文献   

18.
Beta(1)- and beta(2)-adrenergic receptors (beta(1)AR and beta(2)AR) are co-expressed in numerous tissues where they play a central role in the responses of various organs to sympathetic stimulation. Although the two receptor subtypes share some signaling pathways, each has been shown to have specific signaling and regulatory properties. Given the recent recognition that many G protein-coupled receptors can form homo- and heterodimers, the present study was undertaken to determine whether the beta(1)AR and beta(2)AR can form dimers in cells and, if so, to investigate the potential functional consequences of such heterodimerization. Using co-immunoprecipitation and bioluminescence resonance energy transfer, we show that beta(1)AR and beta(2)AR can form heterodimers in HEK 293 cells co-expressing the two receptors. Functionally, beta-adrenergic stimulated adenylyl cyclase activity was found to be identical in cells expressing beta(1)AR, beta(2)AR, or both receptors at similar levels, indicating that heterodimerization did not affect this signaling pathway. When considering ERK1/2 MAPK activity, a significant agonist-promoted activation was detected in beta(2)AR- but not beta(1)AR-expressing cells. Similarly to what was observed in cells expressing the beta(1)AR alone, no beta-adrenergic stimulated ERK1/2 phosphorylation was observed in cells co-expressing the two receptors. A similar inhibition of agonist-promoted internalization of the beta(2)AR was observed upon co-expression of the beta(1)AR, which by itself internalized to a lesser extent. Taken together, our data suggest that heterodimerization between beta(1)AR and beta(2)AR inhibits the agonist-promoted internalization of the beta(2)AR and its ability to activate the ERK1/2 MAPK signaling pathway.  相似文献   

19.
20.
Ca(2+) and calmodulin modulate numerous cellular functions, ranging from muscle contraction to the cell cycle. Accumulating evidence indicates that Ca(2+) and calmodulin regulate the MAPK signaling pathway at multiple positions in the cascade, but the molecular mechanism underlying these observations is poorly defined. We previously documented that IQGAP1 is a scaffold in the MAPK cascade. IQGAP1 binds to and regulates the activities of ERK, MEK, and B-Raf. Here we demonstrate that IQGAP1 integrates Ca(2+) and calmodulin with B-Raf signaling. In vitro analysis reveals that Ca(2+) promotes the direct binding of IQGAP1 to B-Raf. This interaction is inhibited by calmodulin in a Ca(2+)-regulated manner. Epidermal growth factor (EGF) is unable to stimulate B-Raf activity in fibroblasts treated with the Ca(2+) ionophore A23187. In contrast, chelation of intracellular free Ca(2+) concentrations ([Ca(2+)](i)) significantly enhances EGF-stimulated B-Raf activity, an effect that is dependent on IQGAP1. Incubation of cells with EGF augments the association of B-Raf with IQGAP1. Moreover, Ca(2+) regulates the association of B-Raf with IQGAP1 in cells. Increasing [Ca(2+)](i) with Ca(2+) ionophores significantly reduces co-immunoprecipitation of B-Raf and IQGAP1, whereas chelation of Ca(2+) enhances the interaction. Consistent with these findings, increasing and decreasing [Ca(2+)](i) increase and decrease, respectively, co-immunoprecipitation of calmodulin with IQGAP1. Collectively, our data identify a previously unrecognized mechanism in which the scaffold protein IQGAP1 couples Ca(2+) and calmodulin signaling to B-Raf function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号