首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enantioselective hydrolysis of racemic epichlorohydrin for the production of enantiopure (S)-epichlorohydrin using whole cells of Aspergillus niger ZJB-09173 in organic solvents was investigated. Cyclohexane was used as the reaction medium based on the excellent enantioselectivity of epoxide hydrolase from A. niger ZJB- 09173 in cyclohexane. However, cyclohexane had a negative effect on the stability of epoxide hydrolase from A. niger ZJB-09173. In the cyclohexane medium, substrate inhibition, rather than product inhibition of catalysis, was observed in the hydrolysis of racemic epichlorohydrin using A. niger ZJB-09173. The racemic epichlorohydrin concentration was markedly increased by continuous feeding of substrate without significant decline of the yield. Ultimately, 18.5% of (S)-epichlorohydrin with 98 percent enantiomeric excess from 153.6 mM of racemic epichlorohydrin was obtained by the dry cells of A. niger ZJB-09173, which was the highest substrate concentration in the production of enantiopure (S)-epichlorohydrin by epoxide hydrolases using an organic solvent medium among the known reports.  相似文献   

2.
Rat liver cytosolic epoxide hydrolase has been purified and characterized. The enzyme was purified from tiadenol-induced rat liver 540-fold with respect to trans-stilbene oxide as a substrate. Similar purification was obtained with the substrates trans-beta-ethyl styrene oxide and styrene 7,8-oxide, the specific activities decreasing in the order trans-beta-ethyl styrene oxide greater than styrene 7,8-oxide greater than trans-stilbene oxide. The enzyme exerts highest activity at pH 7.4 Km and Vmax of the pure enzyme for trans-stilbene oxide were 1.7 microM and 205 nmol x min-1 x mg protein-1 respectively. With trans-stilbene oxide as a substrate, the inhibition by organic solvents (2.5% by vol.) increased in the order ethanol less than methanol less than acetone less than isopropanol = N,N-dimethyl formamide less than acetonitrile less than tetrahydrofuran. The native enzyme, with a molecular mass of 120 kDa, consists of two 61-kDa subunits. Digestion of rat liver cytosolic and microsomal epoxide hydrolase by three proteases resulted in markedly different peptide maps. Western-blot analysis with antiserum against rat liver cytosolic epoxide hydrolase revealed a single band with the purified enzyme, and with liver cytosol from control and clofibrate-induced rats. No cross-reactivity was observed with purified rat microsomal epoxide hydrolase or microsomes. A positive reaction at the same molecular mass was obtained with liver cytosol of mouse, guinea pig, Syrian hamster and New Zealand white rabbit but not with that of green monkey.  相似文献   

3.
Human liver epoxide hydrolases were characterized by several criteria and a cytosolic cis-stilbene oxide hydrolase (cEHCSO) was purified to apparent homogeneity. Styrene oxide and five phenylmethyloxiranes were tested as substrates for human liver epoxide hydrolases. With microsomes activity was highest with trans-2-methylstyrene oxide, followed by styrene 7,8-oxide, cis-2-methylstyrene oxide, cis-1,2-dimethylstyrene oxide, trans-1,2-dimethylstyrene oxide and 2,2-dimethylstyrene oxide. With cytosol the same order was obtained for the first three substrates, whereas activity with 2,2-dimethylstyrene oxide was higher than with cis-1,2-dimethylstyrene oxide and no hydrolysis occurred with trans-1,2-dimethylstyrene oxide. Generally, activities were lower with cytosol than with microsomes. The isoelectric point for both microsomal styrene 7,8-oxide and cis-stilbene oxide hydrolyzing activity was 7.0, whereas cEHCSO had an isoelectric point of 9.2 and cytosolic trans-stilbene oxide hydrolase (cEHTSO) of 5.7. The cytosolic epoxide hydrolases could be separated by anion-exchange chromatography and gel filtration. The latter technique revealed a higher molecular mass for cEHCSO than for cEHTSO. Both cytosolic epoxide hydrolases showed higher activities at pH 7.4 than at pH 9.0, whereas the opposite was true for microsomal epoxide hydrolase. The effects of ethanol, methanol, tetrahydrofuran, acetonitrile, acetone and dimethylsulfoxide on microsomal epoxide hydrolase depended on the substrate tested, whereas both cytosolic enzymes were not at all, or only slightly, affected by these solvents. Effects of different enzyme modulators on microsomal epoxide hydrolase also depended on the substrates used. Trichloropropene oxide and styrene 7,8-oxide strongly inhibited cEHCSO whereas cEHTSO was moderately affected by these compounds. Immunochemical investigations revealed a close relationship between cEHCSO and rat liver microsomal, but not cytosolic, epoxide hydrolase. Interestingly, cEHTSO has no immunological relationship to rat microsomal, nor to rat cytosolic epoxide hydrolase. cEHTSO from human liver differed also from its counterpart in the rat in that it was only moderately affected by tetrahydrofuran, acetonitrile and trichloropropene oxide. Five steps were necessary to purify cEHCSO. The enzyme has a molecular mass (49 kDa) identical to that of rat liver microsomal epoxide hydrolase.  相似文献   

4.
Endogenous, constitutive soluble epoxide hydrolase in mice 3T3 cells was localized via immunofluorescence microscopy exclusively in peroxisomes, whereas transiently expressed mouse soluble epoxide hydrolase (from clofibrate-treated liver) accumulated only in the cytosol of 3T3 and HeLa cells. When the C-terminal lie of mouse soluble epoxide hydrolase was mutated to generate a prototypic putative type 1 PTS (-SKI to -SKL), the enzyme targeted to peroxisomes. The possibility that soluble epoxide hydrolase-SKI was sorted slowly to peroxiosmes from the cytosol was examined by stably expressing rat soluble epoxide hydrolase-SKI appended to the green fluorescent protein. Green fluorescent protein soluble epoxide hydrolase-SKI was strictly cytosolic, indicating that -SKI was not a temporally inefficient putative type 1 PTS. Import of soluble epoxide hydrolase-SKI into peroxisomes in plant cells revealed that the context of -SKI on soluble epoxide hydrolase was targeting permissible. These results show that the C-terminal -SKI is a non-functional putative type 1 PTS on soluble epoxide hydrolase and suggest the existence of distinct cytosolic and peroxisomal targeting variants of soluble epoxide hydrolase in mouse and rat.  相似文献   

5.
Purification of hepoxilin epoxide hydrolase from rat liver   总被引:3,自引:0,他引:3  
Hepoxilin epoxide hydrolase activity was demonstrated in rat liver cytosol using as substrate [1-14C] hepoxilin A3, a recently described hydroxy epoxide derivative of arachidonic acid. The enzyme was isolated and purified to apparent homogeneity using conventional chromatographic procedures resulting in 41-fold purification. The protein eluted during isoelectric focusing at a pI in the 5.3-5.4 range. The specific activity of the purified protein was 1.2 ng/microgram protein/20 min at 37 degrees C. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, under denaturing conditions, a molecular mass value of 53 kDa was observed. Using native polyacrylamide gel electrophoresis, enzyme activity corresponded to the main protein band. The purified protein used hepoxilin A3 as preferred substrate converting it to trioxilin A3. The enzyme was marginally active toward other epoxides such as leukotriene A4 and styrene oxide. The Mr, pI, and substrate specificity of the hepoxilin epoxide hydrolase indicate that this enzyme is different from the recently reported leukotriene A4 hydrolase from human erythrocytes and rat and human neutrophils and constitutes a hitherto undescribed form of epoxide hydrolase with specificity toward hepoxilin A3. Tissue screening for enzyme activity revealed that this enzyme is ubiquitous in the rat.  相似文献   

6.
Cytosolic epoxide hydrolase was purified from the liver of untreated and clofibrate-treated male C57Bl/6 mice. The purification procedure involves chromatography on DEAE-cellulose, phenyl-Sepharose and hydroxyapatite, takes two days to perform and results in a 120-fold purification and approximately 35% yield of the enzyme from untreated mice. The purified enzyme is a dimer with a molecular mass of 120 kDa, a Stokes' radius of 4.2 nm, a frictional ratio of 1.0 and an isoelectric point of 5.5. The subunits behave identically upon isoelectric focusing in 8 M urea and only one band with a molecular mass of 60 kDa is seen after sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The form purified from clofibrate-treated mice had very similar properties and was apparently identical to the control form as judged by amino acid analysis and peptide mapping as well. These analyses also demonstrated that the cytosolic enzyme is clearly different from microsomal epoxide hydrolase isolated from rat liver. Furthermore, Ouchterlony immunodiffusion using antibodies raised in rabbits towards the control form of cytosolic epoxide hydrolase revealed identity between the two forms of cytosolic epoxide hydrolase, but no reaction with the microsomal epoxide hydrolase was observed. These findings indicate large structural differences between the cytosolic and microsomal forms of epoxide hydrolase in the liver.  相似文献   

7.
The ability of a number of known inhibitors of catalase activity to affect cytosolic and microsomal epoxide hydrolase activities in vitro, measured as enzymatic trans-stilbene oxide hydrolysis and styrene oxide hydrolysis, respectively, was investigated. Catalase and cytosolic epoxide hydrolase activities are inhibited by hydroxylated metabolites of 2-amino-4,5-diphenylthiazole (DPT). The metabolite hydroxylated on the 4-phenyl ring (4OH-DPT) and the metabolite hydroxylated on both phenyl rings (4,5-DIOH-DPT) are potent inhibitors of both enzymes; the metabolite hydroxylated on the 5-phenyl ring (5OH-DPT) is less potent. Unmetabolized DPT has no effect on either enzyme. 4OH-DPT inhibits, but 5OH-DPT enhances, microsomal epoxide hydrolase activity. 4,5-DIOH-DPT and DPT have no effect on this enzyme. Other compounds that inhibit both catalase and cytosolic epoxide hydrolase activities, but do not inhibit microsomal epoxide hydrolase activity, are nordihydroguaiaretic acid and 2-aminothiazole. Microsomal epoxide hydrolase activity is enhanced by 2-aminothiazole and levamisole in vitro. Thus these inhibitors of catalase are selective epoxide hydrolase inhibitors in that they inhibit cytosolic epoxide hydrolase activity in vitro, but have either no effect on, or increase the activity of, microsomal epoxide hydrolase in vitro. Conversely, the selective cytosolic epoxide hydrolase inhibitors 4-phenylchalcone oxide and 4'-phenylchalcone oxide do not inhibit catalase activity, nor does trichloropropene oxide, a selective microsomal epoxide hydrolase inhibitor.  相似文献   

8.
The influence of metyrapone, chalcone epoxide, benzil and clotrimazole on the activity of microsomal epoxide hydrolase towards styrene oxide, benzo[a]pyrene 4,5-oxide, estroxide and androstene oxide was investigated. The studies were performed using liver microsomes from rats, rabbits, mice and humans; epoxide hydrolase purified from rat liver microsomes to apparent homogeneity; and the purified enzyme incorporated into liposomes composed of egg-yolk phosphatidylcholine or total rat liver microsomal lipids. All four effectors were found to activate the hydrolysis of styrene oxide by epoxide hydrolase in situ in rat liver microsomal membranes, in agreement with earlier findings. Epoxide hydrolase activity towards styrene oxide in liver microsomes from mouse, rabbit and man was also increased by all four effectors. The most striking effect was a 680% activation by clotrimazole in rat liver microsomes. However, none of the effectors activated microsomal epoxide hydrolase more than 50% when benzo[a]pyrene 4,5-oxide, estroxide or androstene oxide was used as substrate. Indeed, clotrimazole was found to inhibit microsomal epoxide hydrolase activity towards estroxide 30-50% and towards androstene oxide 60-90%. The effects of these four compounds were found to be virtually identical in the preparations from rats, rabbits, mice and humans. The effects of metyrapone, chalcone epoxide, benzil and clotrimazole on purified epoxide hydrolase were qualitatively the same as those on epoxide hydrolase in intact microsomes, but much smaller in magnitude. These effects were increased in magnitude only slightly by incorporation of the purified enzyme into liposomes made from egg-yolk phosphatidylcholine. However, when incorporation into liposomes composed of total microsomal lipids was performed, the effects seen were essentially of the same magnitude as with intact microsomes. When the extent of activation was plotted against effector concentration, three different patterns were found with different effectors. Activation of epoxide hydrolase activity towards styrene oxide by clotrimazole was found to be uncompetitive with the substrate and highly structure specific. On the other hand, inhibition of epoxide hydrolase activity towards androstene oxide by clotrimazole was found to be competitive in microsomes. It is concluded that the marked effects of these four modulators on microsomal epoxide hydrolase activity are due to an interaction with the enzyme protein itself, but that the presence of total microsomal phospholipids allows the maximal expression leading to similar degrees of modulation as those observed in intact microsomes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
P Wang  J Meijer  F P Guengerich 《Biochemistry》1982,21(23):5769-5776
Epoxide hydrolase (EC 3.3.2.3) was purified to electrophoretic homogeneity from human liver cytosol by using hydrolytic activity toward trans-8-ethylstyrene 7,8-oxide (TESO) as an assay. The overall purification was 400-fold. The purified enzyme has an apparent monomeric molecular weight of 58 000, significantly greater than the 50 000 found for human (or rat) liver microsomal epoxide hydrolase or for another TESO-hydrolyzing enzyme also isolated from human liver cytosol. Purified cytosolic TESO hydrolase catalyzes the hydrolysis of cis-8-ethylstyrene 7,8-oxide 10 times more rapidly than does the microsomal enzyme, catalyzes the hydrolysis of TESO and trans-stilbene oxide as rapidly as the microsomal enzyme, but catalyzes the hydrolysis of styrene 7,8-oxide, p-nitrostyrene 7,8-oxide, and naphthalene 1,2-oxide much less effectively than does the microsomal enzyme. Purified cytosolic TESO hydrolase does not hydrolyze benzo[a]pyrene 4,5-oxide, a substrate for the microsomal enzyme. The activities of the purified enzymes can explain the specific activities observed with subcellular fractions. Anti-human liver microsomal epoxide hydrolase did not recognize cytosolic TESO hydrolase in purified form or in cytosol, as judged by double-diffusion immunoprecipitin analysis, precipitation of enzymatic activity, and immunoelectrophoretic techniques. Cytosolic TESO hydrolase and microsomal epoxide hydrolase were also distinguished by peptide mapping. The results provide evidence that physically different forms of epoxide hydrolase exist in different subcellular fractions and can have markedly different substrate specificities.  相似文献   

10.
The epoxide hydrolase from Rhodotorula glutinis was isolated and initially characterized. The enzyme was membrane associated and could be solubilized by Triton X-100. Purification yielded an enzyme with sp. act. of 66 mol 1,2-epoxyhexane hydrolyzed min–1 mg–1 protein. The enzyme was not completely purified to homogeneity but, nevertheless, a major protein was isolated by SDS-PAGE for subsequential amino acid determination of peptide fragments. From sequence alignments to related enzymes, a high homology towards the active site sequences of other microsomal epoxide hydrolases was found. Molecular mass determinations indicated that the native enzyme exists as a homodimer, with a subunit molecular mass of about 45 kDa. Based upon these, this epoxide hydrolase is structurally related to other microsomal epoxide hydrolases.  相似文献   

11.
Cytosolic epoxide hydrolase   总被引:3,自引:0,他引:3  
Epoxide hydrolase activity is recovered in the high-speed supernatant fraction from the liver of all mammals so far examined, including man. For some as yet unexplained reason, the rat has a very low level of this activity, so that cytosolic epoxide hydrolase is generally studied in mice. This enzyme selectively hydrolyzes trans epoxides, thereby complementing the activity of microsomal epoxide hydrolase, for which cis epoxides are better substrates. Cytosolic epoxide hydrolase has been purified to homogeneity from the livers of mice, rabbits and humans. Certain of the physicochemical and enzymatic properties of the mouse enzyme have been thoroughly characterized. Neither the primary amino acid, cDNA nor gene sequences for this protein are yet known, but such characterization is presently in progress. Unlike microsomal epoxide hydrolase and most other enzymes involved in xenobiotic metabolism, cytosolic epoxide hydrolase is not induced by treatment of rodents with substances such as phenobarbital, 2-acetylaminofluorene, trans-stilbene oxide, or butylated hydroxyanisole. The only xenobiotics presently known to induce cytosolic epoxide hydrolase are substances which also cause peroxisome proliferation, e.g., clofibrate, nafenopin and phthalate esters. These and other observations indicate that this enzyme may actually be localized in peroxisomes in vivo and is recovered in the high-speed supernatant because of fragmentation of these fragile organelles during homogenization, i.e., recovery of this enzyme in the cytosolic fraction is an artefact. The functional significance of cytosolic epoxide hydrolase is still largely unknown. In addition to deactivating xenobiotic epoxides to which the organism is exposed directly or which are produced during xenobiotic metabolism, primarily by the cytochrome P-450 system, this enzyme may be involved in cellular defenses against oxidative stress.  相似文献   

12.
Recombinant Escherichia coli cells harbouring haloalcohol dehalogenase and epoxide hydrolase were successfully immobilized by adsorption onto perlite and used to prepare (R)-epichlorohydrin from 1,3-dichloro-2-propanol by two-step biocatalysis in a specially designed reactor. Two-phase solution was used as the reaction system in order to improve the yield of epichlorohydrin. In the two-phase system containing 40% (v/v) cyclohexane, the yield of racemic epichlorohydrin formed in the first step was 73%, and the yield of (R)-epichlorohydrin with enantiomeric excess (ee) ≥99% increased from 19.2% to 25.1% in the second step. Ultimately, the yield of (R)-epichlorohydrin reached 26.4% by optimization of the flow rate of air and amount of immobilized cells. To our knowledge, this was the first report on production of (R)-epichlorohydrin from 1,3-dichloro-2-propanol by two-step biocatalysis using haloalcohol dehalogenase and epoxide hydrolase.  相似文献   

13.
Hepatic cholesterol-epoxide hydrolase is a microsomal enzyme which appears to be catalytically distinct from the epoxide hydrolase responsible for the catabolism of a wide variety of aromatic and aliphatic epoxides. The diastereomeric forms of cholesterol epoxide, cholesterol 5 alpha,6 alpha-, and cholesterol 5 beta,6 beta-epoxides are converted to cholestane-3 beta,5 alpha,6 beta-triol with equal facility. Kinetic analysis of cholesterol-epoxide hydrolase demonstrated that both diastereomers bind to a common catalytic site. Apparent Km values of 3.69 and 4.42 microM were derived for cholesterol 5 alpha,6 alpha- and cholesterol 5 beta,6 beta-epoxide, respectively. In addition, enzyme activity with both diastereomers was product-inhibited by cholestanetriol through a competitive mechanism with the apparent Ki for cholestanetriol being 10.8 and 6.8 microM against cholesterol alpha- and beta-epoxides, respectively. This inhibitory effect of cholestanetriol may account for the difference observed in the hydration rates for the cholesterol epoxide isomers when they are incubated together in the presence of liver microsomes. Inhibitors of epoxide hydrolase were studied, and three oxidation products were found to be particularly effective against cholesterol-epoxide hydrolase while producing no significant inhibition of styrene-epoxide hydrolase. These inhibitors were 7-ketocholesterol, 6-ketocholestanol, and 7-ketocholestanol, the latter displaying an apparent Ki lower than the Km for either cholesterol epoxide isomer. None of the xenobiotic epoxide hydrolase inhibitors or activators studied affected cholesterol-epoxide hydrolase activity.  相似文献   

14.
Since diepoxides are known metabolites of polyunsaturated fatty acids, the action of the cytosolic epoxide hydrolase purified from liver tissue was examined on these diepoxides. Diepoxymethylstearate was metabolized to the corresponding tetraol by high concentrations of affinity-purified cytosolic epoxide hydrolase. When the enzyme was diluted (1000- to 2000-fold), disappearance of the tetraol metabolite occurred simultaneously with formation of other hydration products with GC retention times and chromatographic mobilities different from those of the tetraol. The hydration products were identified as tetrahydrofuran diols based on comparison of chromatographic properties and mass spectral information with the properties and spectra of chemically generated products. Also, a mixture of diepoxymethylarachidonates was hydrated to tetraols using concentrated enzyme. As the enzyme was diluted (1000- to 2000-fold), a decrease in tetraol formation occurred along with the elevation of other hydration products whose mass spectra were consistent with tetrahydrofuran diol structures. These data are consistent with the epoxide hydrolase at low concentrations acting to open one epoxide followed by nonenzymatic cyclization to the tetrahydrofuran diols. The data also suggest that oxygenated lipids may be endogenous substrates for the cytosolic epoxide hydrolase. Since some oxylipins are known chemical mediators, the in vivo presence and role of these novel diols and tetrahydrofuran diols should be examined.  相似文献   

15.
The potential of polycyclic aromatic hydrocarbons (PAHs) to modulate microsomal epoxide hydrolase activity, determined using benzo[a]pyrene 5-oxide as substrate, in human liver, was evaluated and compared to rat liver. Precision-cut liver slices prepared from fresh human liver were incubated with six structurally diverse PAHs, at a range of concentrations, for 24 h. Of the six PAHs studied, benzo[a]pyrene, dibenzo[a,h]anthracene and fluoranthene gave rise to a statistically significant increase in epoxide hydrolase activity, which was accompanied by a concomitant increase in epoxide hydrolase protein levels determined by immunoblotting. The other PAHs studied, namely dibenzo[a,l]pyrene, benzo[b]fluoranthene and 1-methylphenanthrene, influenced neither activity nor enzyme protein levels. When rat slices were incubated under identical conditions, only benzo[a]pyrene and dibenzo[a,h]anthracene elevated epoxide hydrolase activity, which was, once again accompanied by a rise in protein levels. At the mRNA level, however, all six PAHs caused an increase, albeit to different extent. In rat, epoxide hydroxylase activity in lung slices was much lower than in liver slices. In lung slices, epoxide hydrolase activity was elevated following exposure to benzo[a]pyrene and dibenzo[a,l]pyrene and, to a lesser extent, 1-methylphenanthrene; similar observations were made at the protein level. At both activity and protein levels extent of induction was far more pronounced in the lung compared with the liver. It is concluded that epoxide hydrolase activity is an inducible enzyme by PAHs, in both human and rat liver, but induction potential by individual PAHs varies enormously, depending on the nature of the compound involved. Marked tissue differences in the nature of PAHs stimulating activity in rat lung and liver were noted. Although in the rat basal lung epoxide hydrolase activity is much lower than liver, it is more markedly inducible by PAHs.  相似文献   

16.
Purification of the membrane-associated epoxide hydrolase from the yeast Rhodosporidium toruloides CBS 0349 to electrophoretic homogeneity was achieved in a single chromatographic step employing the affinity ligand adsorbent Mimetic Green. More than 68% of the total epoxide hydrolase activity present in the whole cells was recovered from the membrane fraction. The enzyme was purified 26-fold with respect to the solubilized membrane proteins and was obtained in a 90% yield. The purified epoxide hydrolase has an apparent monomeric molecular weight of 54 kDa, and a pI of 7.3. The enzyme was optimally active at 30–40 °C, and pH 7.3–8.5. The enzyme is highly glycosylated with a carbohydrate content >42%. The specific activity of the purified enzyme for (±)-1,2-epoxyoctane is 172 mol min–1 mg protein–1. The amino acid composition of the protein was determined. This is the first report of a yeast epoxide hydrolase purified to homogeneity in milligram amounts.  相似文献   

17.
Background: Epoxide hydrolases have important roles in the defense of cells against potentially harmful epoxides. Conversion of epoxides into less toxic and more easily excreted diols is a universally successful strategy. A number of microorganisms employ the same chemistry to process epoxides for use as carbon sources. Results: The X-ray structure of the epoxide hydrolase from Aspergillus niger was determined at 3.5 A resolution using the multiwavelength anomalous dispersion (MAD) method, and then refined at 1.8 A resolution. There is a dimer consisting of two 44 kDa subunits in the asymmetric unit. Each subunit consists of an alpha/beta hydrolase fold, and a primarily helical lid over the active site. The dimer interface includes lid-lid interactions as well as contributions from an N-terminal meander. The active site contains a classical catalytic triad, and two tyrosines and a glutamic acid residue that are likely to assist in catalysis. Conclusions: The Aspergillus enzyme provides the first structure of an epoxide hydrolase with strong relationships to the most important enzyme of human epoxide metabolism, the microsomal epoxide hydrolase. Differences in active-site residues, especially in components that assist in epoxide ring opening and hydrolysis of the enzyme-substrate intermediate, might explain why the fungal enzyme attains the greater speeds necessary for an effective metabolic enzyme. The N-terminal domain that is characteristic of microsomal epoxide hydrolases corresponds to a meander that is critical for dimer formation in the Aspergillus enzyme.  相似文献   

18.
Epoxide hydrolase in human adrenal gland was characterized with respect to catalytic properties and subcellular distribution. With human adrenal microsomes and the substrates styrene-7,8-oxide, cis-stilbene oxide, estroxide and androstene oxide the specific activities were between 1.9 and 19.0 nmol/min/mg protein. With styrene-7,8-oxide as substrate the apparent Km-value was 0.98 mM and the pH optimum was 9.2. Subcellular fractionation revealed that the bulk of the activity was confined to the endoplasmic reticulum. Different compounds known to influence rodent microsomal epoxide hydrolase activity were also tested on the human adrenal enzyme. 1,1,1-Trichloropropene-2,3-oxide (TCPO) and cyclohexene oxide (CHO) inhibited the activity while benzil and clotrimazole stimulated the activity. Partial purification of human adrenal epoxide hydrolase indicates that its molecular weight is about 51 000 and that its concentration relative total protein in the human adrenal microsomes is about 10%.  相似文献   

19.
Immunochemical techniques were used to investigate the biochemical properties of human lung epoxide hydrolases. Two epoxide hydrolases with different immunoreactive properties were identified. These two epoxide hydrolases were found in both cytosolic and microsomal cell fractions. Immunotitration of enzyme activity showed that enzymes that catalyze the hydration of benzo(a)pyrene 4,5-oxide react with antiserum to rat microsomal epoxide hydrolase; those that hydrate trans-stilbene oxide do not. Immunotitration and Western blot experiments showed that microsomal and cytosolic benzo(a)pyrene 4,5-oxide hydrolases have significant structural homology. Immunohistochemical staining of human lung benzo(a)pyrene 4,5-oxide hydrolase showed that the enzyme is localized primarily in the bronchial epithelium. No cell type-specific localization was observed. An enzyme-linked immunosorbent assay was developed which allows direct quantitation of benzo(a)pyrene 4,5-oxide hydrolase protein. Levels of enzyme protein detected by this assay correlated well with enzyme levels determined by substrate conversion assays.  相似文献   

20.
This study was performed in order to study the response of epoxide hydrolases in different subcellular compartments of mouse liver to treatment with various compounds. Male C57BL/6 mice were treated with 31 different compounds--including traditional inducers of xenobiotic-metabolizing systems, liver carcinogens, stilbene derivatives, endogenous compounds and various other drugs and xenobiotics. The effects on liver somatic index; protein contents in 'mitochondria', microsomes and cytosol prepared from the liver; epoxide hydrolase activity towards trans- or cis-stilbene oxide in these three fractions; microsomal cytochrome P-450 content; cytosolic and 'mitochondrial' glutathione transferase activity and cytosolic DT-diaphorase activity were then determined. Cytosolic epoxide hydrolase activity was induced by chlorinated paraffins, di(2-ethylhexyl)phthalate and clofibrate and depressed by alpha-naphthylisothiocyanate, 3-methylcholanthrene, benzil and quercitin. Radial immunodiffusion revealed similar changes in the amount of enzyme protein present, except for two cases, where the increase in amount was larger; and the enzyme seems to be inhibited by benzil. Microsomal epoxide hydrolase activity was induced by these same compounds and several others as well, including dibenzoylmethane, butylated hydroxyanisole and polychlorinated biphenyls. 'Mitochondrial' epoxide hydrolase activity towards trans-stilbene oxide was not affected by those compounds which induced the cytosolic enzyme, but increased about two-fold after treatment with 2-acetylaminofluorene, DL-ethionine, aflatoxin B1 and phenobarbital. There does not seem to be any co-regulation of different forms of epoxide hydrolase in mouse liver. In general small effects were observed on liver weight and protein contents in the different subcellular fractions. Polychlorinated biphenyls were the most potent of the 8 compounds which induced cytochrome P-450, while butylated hydroxyanisole induced cytosolic glutathione transferase activity to the highest extent. 'Mitochondrial' glutathione transferase activity was most induced by certain of the stilbene derivatives. The most potent inducers of DT-diaphorase activity were 3-methylcholanthrene, polychlorinated biphenyls and dinitrotoluene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号