首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agents which elevate cyclic AMP (cAMP) cause teleost retinal rods to contract. We have characterized this cAMP effect and have evaluated the role of the cytoskeleton in cyclic nucleotide-induced contraction, using actin and microtubule inhibitors. The necklike myoid region of the rod contracts in the dark and elongates in the light. If long, light-adapted rods are cultured with cAMP analogs and IBMX, rods contract to their short dark-adapted position. Cyclic nucleotide- induced rod contraction occurs in constant light, requires a phosphodiesterase inhibitor, and is specific to cAMP (db cyclic GMP, 8- bromocyclic GMP, 5'AMP, and adenosine have no effect on rod myoid length). Cyclic AMP effects on rod length are consistent with observations from several species that cAMP levels are higher in dark- adapted than in light-adapted retinas. Since rod myoids contain paraxially aligned actin filaments and microtubules, we have used the motility inhibitors cytochalasin D and cold and nocodazole to investigate the roles of these cytoskeletal elements in rod contraction. Cyclic nucleotide-induced contraction is not inhibited when myoid microtubules are disrupted with cold and nocodazole treatments, but contraction is blocked if myoid actin filaments are disrupted with cytochalasin D. Thus, we conclude that actin filaments, but not microtubules, are required for rod contraction. We propose that rod contraction in vivo is triggered by a rise of cytoplasmic cAMP at onset of darkness and that this contraction is mediated by an actin- dependent mechanism.  相似文献   

2.
Microtubules in cone myoid elongation in the teleost retina   总被引:8,自引:6,他引:2       下载免费PDF全文
The myoids of retinal cone cells of the blue-striped grunt (Haemulon sciurus) undergo significant elongation during dark adaptation of the retina. Longitudinally oriented microtubules are present in myoids both before and after elongation. Injection of colchicine into the vitreous of the eye in vivo disrupts the microtubules in the myoids and prevents dark-adaptive myoid elongation. Counts of microtubules in transverse sections along the lengths of elongating myoids show that there is a uniform decrease in the number of microtubules at any one point along the myoid as the myoid elongates. The magnitude of the decrease is proportional to the extent of the elogation. The product of the mean myoid microtubule number (determined from counts at progressive intervals along the myoid) and the myoid length remains essentially constant during myoid elongation, indicating that the total quantity of microtubules in the myoid does not increase with elogation. Serial section tracings of the microtubules along the myoids suggest that individual microtubules do not extend the length of the myoid and that the myoid microtubular apparatus consists of bundles of overlapping shorter microtubules. We propose that elongation of the myoid is accompanied by sliding redistribution of microtubules along the length of the myoid, and that the sliding may be generated by interaction between microtubules in regions where they closely overlap in bundles. We find no evidence for the involvement of discrete, electron-dense microtubular organizing centers in myoid elogation.  相似文献   

3.
Retinal rod photoreceptors of teleost fish elongate in the light and shorten in the dark. Rod cell elongation and shortening are both mediated by actin-dependent mechanisms that occur in the inner segment myoid and ellipsoid. The intracellular signaling pathways by which light and dark regulate the actin cytoskeleton in the inner segment are unknown. To investigate the intracellular signals that regulate teleost rod motility, we have been using mechanically isolated rod inner/outer segments (RIS-ROS) obtained from the retinas of green sunfish, Lepomis cyanellus. In culture, RIS-ROS retain the ability to elongate in response to light; myoids elongate 15-20 microns in length during 45 min of light culture. A pharmacological approach was taken to investigate the role of cyclic nucleotides, cyclic nucleotide-dependent kinases, and protein phosphatases in the regulation of RIS-ROS motility. Millimolar concentrations of cAMP and cGMP analogues were both found to inhibit light-induced myoid elongation and two cyclic nucleotide analogues, SpCAMPS and 8BrcGMP, promoted myoid shortening after RIS-ROS had elongated in response to light. The cyclic nucleotide- dependent kinase inhibitor, H8, mimicked light by promoting myoid elongation in the dark. The effects of H8 were dose dependent, with maximal elongation occurring at concentrations of approximately 100 microM. Similar to the effects of cyclic nucleotide analogues, the phosphatase inhibitor, okadaic acid (0.1-10 microM), inhibited light- induced elongation and promoted shortening. The results presented here suggest that RIS-ROS motility is regulated by protein phosphorylation: phosphorylation in the dark by cyclic nucleotide-dependent protein kinases promotes rod shortening, while dephosphorylation in the light promotes rod elongation.  相似文献   

4.
In the retinas of teleost fish, rod photoreceptors elongate in response to light. Light-activated elongation is mediated by the myoid of the rod inner segment and is actin-dependent. Inner segment F-actin filaments form bundles running parallel to the cell's long axis. We examined the mechanism of rod elongation using mechanically-detached rod fragments, consisting of the motile inner segment and sensory outer segment (RIS-ROS). When RIS-ROS are isolated from dark-adapted green sunfish and cultured in the light, they elongate 15 microns at 0.3-0.6 microns/min. Elongation was inhibited 65% by 0.1 microM Cytochalasin D, suggesting a requirement for actin assembly. To determine the extent of assembly during elongation, we used three approaches to measure the F-actin content in RIS-ROS: detection of pelletable actin by SDS-PAGE after detergent-extraction of RIS-ROS; quantification of fluorescein-phalloidin binding by fluorimetry, fluorescence-activated cell sorting and image analysis; estimation of total F-actin filament length by electron microscopy. All three assays indicated that no net assembly of RIS-ROS F-actin accompanied myoid elongation. An increase in F-actin content within the elongated myoid was counterbalanced by a decrease in F-actin content within the 13 microvillus-like calycal processes located at the end of the inner segment opposite to the growing myoid. O'Connor and Burnside (Journal of Cell Biology 89:517-524, 1981) showed that minus-ends of rod F-actin filaments are oriented towards the elongating myoid while plus-ends are oriented towards the shortening calycal processes. Our observations suggest that RIS-ROS elongation entails actin polymerization at the minus-ends of filaments coupled with depolymerization at the filament plus-ends.  相似文献   

5.
Teleost retinal cones contract in light and elongate in darkness. This paper describes the disposition of microtubules and cytoplasmic filaments in cone cells of 2 species of fish (Haemulon sciurus and Lutjanus griseus). In Haemulon, the neck-like “myoid” region of the cone changes in length from 5 μ to 75 μ. Maximal observed rates of elongation and contraction are comparable to that of chromosome movement in mitosis (2–3 μ/min). Microtubules presumably participate in cone elongation, since numerous longitudinal microtubules are present in the myoid region, and colchicine blocks dark-induced elongation. Myoid shortening, on the other hand, appears to be an active contractile process. Disruption of microtubules in dark-adapted cones does not produce myoid shortening in the absence of light, and light-induced myoid shortening is blocked by cytochalasin-B. Cone cells possess longitudinally-oriented thin filaments which bind myosin subfragment-1 to form arrowhead complexes typical of muscle actin. Myoid thin filaments are clearly observed in negatively stained preparations of isolated cones which have been disrupted with detergent after attachment to grids. These myoid filaments are not, however, generally preserved by conventional fixation, though bundles of thin filaments are preserved in other regions of the cell. Thus, actin filaments are poorly retained by fixation in precisely the region of the cone cell where contraction occurs. Cone cells also possess longitudinally-oriented thick filaments 130–160Å in diameter. That these thick filaments may be myosin is suggested by the presence of side-arms with approximately 150 Å periodicity. The linear organization of the contractile apparatus of the retinal cone cell makes this cell a promising model for morphological characterization of the disposition of actin and myosin filaments during contraction in a nonmuscle cell.  相似文献   

6.
Teleost retinal cones contract in the light and elongate in the dark. In the green sunfish, Lepomis cyanellus, the necklike myoid region of the cone contracts from as much as 120 micrometers (midnight dark- adapted) to 6 micrometers in fully light-adapted state. When dark- adapted fish are exposed to light (1.4 lux), cone myoids contract with a linear rate of 1.5 +/- 0.1 micrometers/min. We report here that detergent-lysed motile models of teleost retinal cones exhibit calcium- and ATP-dependent reactivated contraction, with morphology and rate comparable to that observed in vivo. For reactivation studies isolated dark-adapted retinas were lysed with nonionic detergent Brij-58 (0.1- 1.0%). In reactivation medium containing 10(-5) M free calcium and 4 mM ATP, the lysed cones contracted with normal morphology at in vivo rates (1.4 +/- 1 micrometer/min). Little contraction was observed if ATP or detergent was deleted from the medium or if free calcium levels were less than 10(-8) M. Ultrastructural examination of cone models lysed with 1% Brij-58 revealed that, in spite of extensive extraction of the cytoplasmic matrix, cytoskeletal components (thin filaments, intermediate filaments, microtubules) were still present. Thus we have produced extensively extracted motile models of teleost retinal cones which undergo calcium- and ATP-dependent reactivated contraction with normal morphology at physiological rate.  相似文献   

7.
Fibroblasts in situ reside within a collagenous stroma and are elongate and bipolar in shape. If isolated and grown on glass, they change from elongate to flat shape, lose filopodia, and acquire ruffles. This shape change can be reversed to resemble that in situ by suspending the cells in hydrated collagen gels. In this study of embryonic avian corneal fibroblasts grown in collagen gels, we describe for the first time the steps in the acquisition of the elongate shape and analyze the effect of cytoskeleton-disrupting drugs on filopodial activity, assumption of bipolarity, and cell elongation within extracellular matrix. We have previously shown by immunofluorescence that filopodia contain actin but not myosin and are free of organelles. The cell cortex is rich in actin and the cytosol, in myosin. By using antitubulin, we show in the present study that microtubules are aligned along the long axis of the bipolar cell body. The first step in assumption of the elongate shape is extension of filopodia by the round cells suspended in collagen, and this is not significantly affected by the drugs we used: taxol to stabilize microtubules; nocodazole to disassemble microtubules; and cytochalasin D to disrupt microfilaments. The second step, movement of filopodia to opposite ends of the cell, is disrupted by cytochalasin, but not by taxol or nocodazole. The third step, extension of pseudopodia and acquisition of bipolarity similarly requires intact actin, but not microtubules. If fibroblasts are allowed to become bipolar before drug treatment, moreover, they remain so in the presence of the drugs. To complete the fourth step, extensive elongation of the cell, both intact actin and microtubules are required. Retraction of the already elongated cell occurs on microtubule disruption, but retraction requires an intact actin cytoskeleton. We suggest that the cell interacts with surrounding collagen fibrils via its actin cytoskeleton to become bipolar in shape, and that microtubules interact with the actin cortex to bring about the final elongation of the fibroblast.  相似文献   

8.
Summary We investigated the possible involvement of actin in the attachment of chromosomes to spindles in crane-fly primary spermatocytes. In a previous study, cytochalasin D, an inhibitor of actin polymerisation, prevented bivalent attachment to microtubules when applied at prophase, but did not cause the detachment of already attached bivalents. We were able to detach the already attached bivalents by first treating prometaphase cells with an antitubulin drug, nocodazole, to disrupt spindle microtubules. 2 min after nocodazole addition, we added cytochalasin D, to disrupt actin filaments; then 2 min later nocodazole was removed, and the cells were kept in cytochalasin D until the time of normal anaphase. Double treatment with nocodazole and cytochalasin D blocked reattachment of bivalents to the spindle. Single treatment with nocodazole alone caused chromosome detachment but did not prevent reattachment when nocodazole was washed out. Extended treatment with cytochalasin D alone starting in prometaphase did not cause bivalents to detach from the spindle. These data suggest that actin is needed for attachment of bivalents to spindle microtubules. This protocol is relevant to the anaphase-onset checkpoint. From previous experiments it was argued that the anaphase-onset checkpoint recognises unattached chromosomes only after those chromosomes first interact with (become attached to) the spindle. Our experiments showed that anaphase disjunction occurred at normal times when bivalents were prevented from attaching to the spindle (by adding cytochalasin D in prophase), while anaphase disjunction was greatly delayed when previously attached bivalents were detached (with nocodazole) and then prevented from re-attaching (with cytochalasin D) in the double treated cells. Thus the anaphaseonset checkpoint recognises only those unattached bivalents that previously were attached to the spindle. Other results provided further indication that actin-microtubule interactions are important in spindle organisation. Nocodazole treatment for 4 min caused most microtubules to disappear: bivalents aggregated around remnant microtubules. When cytochalasin D treatment followed nocodazole treatment, remnant spindle microtubules were not seen, suggesting that actin interactions help stabilise those microtubules.Abbreviations CD cytochalasin D - NMBD nuclear-membrane breakdown - NOC nocodazole  相似文献   

9.
Fibroblasts alter their shape, orientation, and direction of movement to align with the direction of micromachined grooves, exhibiting a phenomenon termed topographic guidance. In this study we examined the ability of the microtubule and actin microfilament bundle systems, either in combination with or independently from each other, to affect alignment of human gingival fibroblasts on sets of micromachined grooves of different dimensions. To assess specifically the role of microtubules and actin microfilament bundles, we examined cell alignment, over time, in the presence or absence of specific inhibitors of microtubules (colcemid) and actin microfilament bundles (cytochalasin B). Using time-lapse videomicroscopy, computer-assisted morphometry and confocal microscopy of the cytoskeleton we found that the dimensions of the grooves influenced the kinetics of cell alignment irrespective of whether cytoskeletons were intact or disturbed. Either an intact microtubule or an intact actin microfilament-bundle system could produce cell alignment with an appropriate substratum. Cells with intact microtubules aligned to smaller topographic features than cells deficient in microtubules. Moreover, cells deficient in microtubules required significantly more time to become aligned. An unexpected finding was that very narrow 0.5-μm-wide and 0.5-μm-deep grooves aligned cells deficient in actin microfilament bundles (cytochalasin B-treated) better than untreated control cells but failed to align cells deficient in microtubules yet containing microfilament bundles (colcemid treated). Thus, the microtubule system appeared to be the principal but not sole cytoskeletal substratum-response mechanism affecting topographic guidance of human gingival fibroblasts. This study also demonstrated that micromachined substrata can be useful in dissecting the role of microtubules and actin microfilament bundles in cell behaviors such as contact guidance and cell migration without the use of drugs such as cytochalasin and colcemid.  相似文献   

10.
Summary In the characean algaNitella, depolymerization of microtubules potentiates the inhibitory effects of cytochalasins on cytoplasmic streaming. Microtubule depolymerization lowers the cytochalasin B and D concentrations required to inhibit streaming, accelerates inhibition and delays streaming recovery. Because microtubule depolymerization does not significantly alter3H-cytochalasin B uptake and release, elevated intracellular cytochalasin concentrations are not the basis for potentiation. Instead, microtubule depolymerization causes actin to become more sensitive to cytochalasin. This increased sensitivity of actin is unlikely to be due to direct stabilization of actin by microtubules, however, because very few microtubules colocalize with the subcortical actin bundles that generate streaming. Furthermore, microtubule reassembly, but not recovery of former transverse alignment, is sufficient for restoring the normal cellular responses to cytochalasin D. We hypothesize that either tubulin or microtubule-associated proteins, released when microtubules depolymerize, interact with the actin cytoskeleton and sensitize it to cytochalasin.Abbreviations APW artificial pond water - Cac cytoplasraic free calcium concentration - DMSO dimethyl sulfoxide - MT microtubule-minus - MT+ microtubule-plus.  相似文献   

11.
In vertebrate rod photoreceptor cells, arrestin and the visual G-protein transducin move between the inner segment and outer segment in response to changes in light. This stimulus dependent translocation of signalling molecules is assumed to participate in long term light adaptation of photoreceptors. So far the cellular basis for the transport mechanisms underlying these intracellular movements remains largely elusive. Here we investigated the dependency of these movements on actin filaments and the microtubule cytoskeleton of photoreceptor cells. Co-cultures of mouse retina and retinal pigment epithelium were incubated with drugs stabilizing and destabilizing the cytoskeleton. The actin and microtubule cytoskeleton and the light dependent distribution of signaling molecules were subsequently analyzed by light and electron microscopy. The application of cytoskeletal drugs differentially affected the cytoskeleton in photoreceptor compartments. During dark adaptation the depolymerization of microtubules as well as actin filaments disrupted the translocation of arrestin and transducin in rod photoreceptor cells. During light adaptation only the delivery of arrestin within the outer segment was impaired after destabilization of microtubules. Movements of transducin and arrestin required intact cytoskeletal elements in dark adapting cells. However, diffusion might be sufficient for the fast molecular movements observed as cells adapt to light. These findings indicate that different molecular translocation mechanisms are responsible for the dark and light associated translocations of arrestin and transducin in rod photoreceptor cells.  相似文献   

12.
Summary. We used an ultraviolet microbeam to cut individual kinetochore spindle fibres in metaphase crane-fly spermatocytes. We then followed the growth of the “kinetochore stubs”, the remnants of kinetochore fibres that remain attached to kinetochores. Kinetochore stubs elongate with constant velocity by adding tubulin subunits at the kinetochore, and thus elongation is related to tubulin flux in the kinetochore microtubules. Stub elongation was blocked by cytochalasin D and latrunculin A, actin inhibitors, and by butanedione monoxime, a myosin inhibitor. We conclude that actin and myosin are involved in generating elongation and thus in producing tubulin flux in kinetochore microtubules. We suggest that actin and myosin act in concert with a spindle matrix to propel kinetochore fibres poleward, thereby causing stub elongation and generating anaphase chromosome movement in nonirradiated cells. Correspondence: A. Forer, Biology Department, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.  相似文献   

13.
We observed that after treatment of V-79 fibroblasts with cytochalasin B the area of cell contact with the substrate is essentially reduced, the microtubules are organized into rodlike structures and the actin filaments are disintegrated. Remnants of the actin cortex become concentrated in the form of discrete patches under the plasma membrane. The described changes in the organization of the cytoskeleton and of the cortical shell are accompanied by the formation of a cell shape resembling the Greek letter phi. We calculated that the phi shape corresponds to the minimum of the stretching energy of the cortical shell at relevant geometrical constraints. In line with this result, if cytochalasin B treatment was followed by colchicine application which disrupted the microtubular rod, the characteristic phi shape completely disappeared. This study suggests that the effect of the microtubular rod on the cell shape can be theoretically well described by taking into account some basic conditions for the mechanical equilibrium of the cell cortical shell and the appropriate geometrical constraints.  相似文献   

14.
By using indirect immunofluorescence and confocal microscopy, we documented changes in the distribution of elongation factor-1[alpha] (EF-1[alpha]), actin, and microtubules during the development of maize endosperm cells. In older interphase cells actively forming starch grains and protein bodies, the protein bodies are enmeshed in EF-1[alpha] and actin and are found juxtaposed with a multidirectional array of microtubules. Actin and EF-1[alpha] appear to exist in a complex, because we observed that the two are colocalized, and treatment with cytochalasin D resulted in the redistribution of EF-1[alpa]. These data suggest that EF-1[alpha] and actin are associated in maize endosperm cells and may help to explain the basis of the correlation we found between the concentration of EF-1[alpha] and lysine content. The data also support the hypothesis that the cytoskeleton plays a role in storage protein deposition. The distributions of EF-1[alpha] actin, and microtubules change during development. We observed that in young cells before the accumulation of starch and storage protein, EF-1[alpha], actin, and microtubules are found mainly in the cell cortex or in association with nuclei.  相似文献   

15.
1. Posttranslational modifications of tubulin by acetylation and detyrosination have been correlated previously with microtubule stability in numerous cell types. 2. In this study, posttranslational modifications of tubulin and their regional distribution within teleost photoreceptor cones and rods are demonstrated immunohistochemically using antibodies specific for acetylated, detyrosinated, or tyrosinated tubulin. 3. Immunolocalization was carried out on isolated whole cones and mechanically detached rod and cone inner/outer segments. 4. Acetylated tubulin within rods and cones is found only in microtubules of the ciliary axoneme of the outer segment. Detyrosinated tubulin is also enriched in axonemes of both rod and cone outer segments. 5. Distributions of tyrosinated and detyrosinated cytoplasmic microtubules differ within cones and rods. In cones, detyrosinated and tyrosinated tubulins are both abundant throughout the cell body. In rods, the ellipsoid and myoid contain much more tyrosinated tubulin than detyrosinated tubulin. Comparisons between whole cones and cone fragments suggest that detyrosinated microtubules are more stable than tyrosinated microtubules in teleost photoreceptors. 6. Our findings provide further evidence that microtubules of teleost cones differ from rod microtubules in their stabilities and rapidity of turnover within the photoreceptor inner segment.  相似文献   

16.
Q. -Y. Wang  P. Nick 《Protoplasma》1998,204(1-2):22-33
Summary The rice mutantYin-Yang has been selected during a screen for resistance to cytoskeletal drugs and is characterized by alterations in epidermal cell length and a precocious onset of gravitropism. The elongation response of coleoptile segments to auxin does not reveal changes of auxin sensitivity inYin-Yang. However, in contrast to the wild type, cell elongation inYin-Yang is highly sensitive to the actin-polymerisation blocker cytochalasin D. This increased sensitivity to cytochalasin D requires optimal concentrations of auxin to become manifest. The auxin response of actin microfilaments in epidermal cells differs between wild type and mutant. In the wild type, the longitudinal microfilament bundles become loosened in response to auxin. In the mutant, these bundles disintegrate partially and are replaced by a network of short filaments surrounding the nucleus. Several aspects of the mutant phenotype can be mimicked in the wild type by treatment with cytochalasin D. The mutant phenotype is discussed in terms of signal-dependent changes of actin dynamics and the putative role of actin during cell elongation.Abbreviations CD cytochalasin D - EPC ethyl-N-phenylcarbamate  相似文献   

17.
Diaphanous-related formins (DRFs) are actin nucleators that mediate rearrangements of the actin cytoskeleton downstream of specific Rho GTPases. The DRF Formin Homology 2 Domain containing 1 (FHOD1) interacts with the Rac1 GTPase and induces the formation of and associates with bundled actin stress fibers. Here we report that active FHOD1 also coordinates microtubules with these actin stress fibers. Expression of a constitutive active FHOD1 variant in HeLa cells not only resulted in pronounced formation of FHOD1-actin fibers but also caused marked cell elongation and parallel alignment of microtubules without affecting cytokinesis of these cells. The analysis of deletions in the FH1 and FH2 functional regions revealed that the integrity of both domains was strictly required for FHOD1's effects on the cytoskeleton. Dominant-negative approaches demonstrated that filament coordination and cell elongation depended on the activity of the Rho-ROCK cascade, but did not involve Rac or Cdc42 activity. Experimental depolymerization of actin filaments or microtubules revealed that the formation of FHOD1-actin fibers was a prerequisite for the polarization of microtubules. However, only simultaneous disruption of both filament systems reversed the cell elongation induced by activated FHOD1. Thus, sustained cell elongation was a consequence of FHOD1-mediated actin-microtubule coordination. These results suggest filament coordination as a conserved function of mammalian DRFs.  相似文献   

18.
In the present study, using immunofluorescence microscopy, we have demonstrated that normal and Ha-ras-1 transformed Buffalo rat liver (BRL) cells which were exposed to cytoskeletal protein inhibitors, showed a differential resistance of their microfilament and microtubule networks. One hour exposure of normal BRL cells to 10(-5) M cytochalasin B provoked a clear and already total breakdown of actin filaments. However, at this concentration of cytochalasin B, the microfilaments of transformed BRLHO6T1-1 cells were not seriously affected; a higher cytochalasin B concentration (> or = 2 x 10(-5) M) was required to induce a significant breakdown of microfilaments in these transformed cells. The two cell lines also demonstrated differential microtubule stability when they were treated with either colchicine or triethyllead. Three hours exposure to 10(-6) M of either antimicrotubule agents was sufficient to disrupt the microtubules of normal BRL cells, without affecting their counterparts in the transformed BRLHO6T1-1 cells. A 10-fold higher drug concentration (10(-5) M) was required to induce microtubular breakdown in the transformed BRL cells. The differential stability of microfilaments and microtubules in normal and transformed BRL cells that was observed could not be attributed to a differential internalization of the agents, as shown by experiments on the uptake of [3H]-cytochalasin B and triethyllead. In addition, the transformed BRLHO6T1-1 cells did not express altered actin and tubulin isoforms, as demonstrated by isoelectric focusing followed by immunoblotting analysis. We conclude that the transformation of BRL cells with the Ha-ras-1 oncogene results in a greater stability of microfilaments and microtubules, leading to a structurally firmer cell shape.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Elongation of diffusely expanding plant cells is thought to be mainly under the control of cortical microtubules. Drug treatments that disrupt actin microfilaments, however, can reduce elongation and induce radial swelling. To understand how microfilaments assist growth anisotropy, we explored their functional interactions with microtubules by measuring how microtubule disruption affects the sensitivity of cells to microfilament-targeted drugs. We assessed the sensitivity to actin-targeted drugs by measuring the lengths and diameters of expanding roots and by analysing microtubule and microfilament patterns in the temperature-sensitive Arabidopsis thaliana mutant microtubule organization 1 (mor1-1), along with other mutants that constitutively alter microtubule arrays. At the restrictive temperature of mor1-1, root expansion was hypersensitive to the microfilament-disrupting drugs latrunculin B and cytochalasin D, while immunofluorescence microscopy showed that low doses of latrunculin B exacerbated microtubule disruption. Root expansion studies also showed that the botero and spiral1 mutants were hypersensitive to latrunculin B. Hypersensitivity to actin-targeted drugs is a direct consequence of altered microtubule polymer status, demonstrating that cross-talk between microfilaments and microtubules is critical for regulating anisotropic cell expansion.  相似文献   

20.
Abstract: In the retinas of teleost fish, cone photoreceptors change shape in response to light and circadian signals. They elongate in the dark, contract in the light, and under conditions of constant darkness undergo appropriate movements at expected dusk and dawn. Dopamine induces cones to contract, thus mimicking the effect of light or expected dawn. To identify the receptor subtype responsible for mediating dopamine regulation of cone retinomotor movements, we have carried out pharmacological studies using isolated fragments of teleost cones consisting of cone inner segments-cone outer segments (CIS-COS). Isolated CIS-COS retain the ability to elongate in dark culture and contract when subsequently exposed to light or dopamine. We report that dark-induced elongation of CIS-COS was inhibited by dopamine and its agonists with an effectiveness ranking of dopamine = quinpirole > bromocriptine ⋙SKF-38393. After 60 min of elongation in dark culture, CIS-COS myoids contracted when subsequently cultured in the dark with dopamine or quinpirole. Quinpirole-induced inhibition of elongation and quinpirole-induced contraction were completely blocked by clozapine at 1 µ M or by sulpiride at 100 µ M . These effectiveness profiles for dopamine agonists and antagonists suggest that dopamine regulation of cone retinomotor movement is mediated by a D4-like receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号