首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Factors influencing the Agrobacterium-mediated transformation of both monocotyledonous and dicotyledonous plant species have been widely investigated. These factors include manipulating Agrobacterium strains and plasmids, growth conditions for vir gene induction, plant genotype, inoculation and co-culture conditions, and the selection agents and their application regime. We report here a novel physical parameter during co-culture, desiccation of plant cells or tissues post-Agrobacterium infection, which greatly enhances transfer DNA (T-DNA) delivery and increases stable transformation efficiency in wheat. Desiccation during co-culture dramatically suppressed Agrobacterium growth, which is one of the factors known to favor plant cell recovery. Osmotic and abscisic acid treatments and desiccation prior to inoculation did not have the same enhancement effect as desiccation during co-culture on T-DNA delivery in wheat. An efficient transformation protocol has been developed based on desiccation and is suitable for both paromomycin and glyphosate selection. Southern analysis showed approximately 67% of transgenic wheat plants received a single copy of the transgene.  相似文献   

2.
Summary Since the success of Agrobacterium-mediated transformation of rice in the early 1990s, significant advances in Agrobacterium-mediated transformation of monocotyledonous plant species have been achieved. Transgenic plants obtained via Agrobacterium-mediated transformation have been regenerated in more than a dozen monocotyledonous species, ranging from the most important cereal crops to ornamental plant species. Efficient transformation protocols for agronomically important cereal crops such as rice, wheat, maize, barley, and sorghum have been developed and transformation for some of these species has become routine. Many factors influencing Agrobacterium-mediated transformation of monocotyledonous plants have been investigated and elucidated. These factors include plant genotype, explant type, Agrobacterium strain, and binary vector. In addition, a wide variety of inoculation and co-culture conditions have been shown to be important for the transformation of monocots. For example, antinecrotic treatments using antioxidants and bactericides, osmotic treatments, desiccation of explants before or after Agrobacterium infection, and inoculation and co-culture medium compositions have influenced the ability to recover transgenic monocols. The plant selectable markers used and the promoters driving these marker genes have also been recognized as important factors influencing stable transformation frequency. Extension of transformation protocols to elite genotypes and to more readily available explants in agronomically important crop species will be the challenge of the future. Further evaluation of genes stimulating plant cell division or T-DNA integration, and genes increasing competency of plant cells to Agrobacterium, may increase transformation efficiency in various systems. Understanding mechanisms by which treatments such as desiccation and antioxidants impact T-DNA delivery and stable transformation will facilitate development of efficient transformation systems.  相似文献   

3.

Wheat is the most widely grown staple food crop in the world and accounts for dietary needs of more than 35% of the human population. Current status of transgenic wheat development is slow all over the world due to the lack of a suitable transformation system. In the present study, an efficient and reproducible Agrobacterium-mediated transformation system in bread wheat (Triticum aestivum L.) is established. The mature and immature embryos of six recently released high yielding spring bread wheat genotypes were used to standardize various parameters using Agrobacterium tumefaciens strain EHA105 harbouring binary vector pCAMBIA3301 having gus and bar as marker genes. The optimum duration for embryo pre-culture, inoculation time and co-cultivation were 2 days, 30 min and 48 h, respectively. The bacterial inoculum concentration of OD of 1 at 600 nm showed 67.25% transient GUS expression in the histochemical GUS assay. The filter paper based co-cultivation limits the Agrobacterium overgrowth and had 82.3% explants survival rate whereas medium based strategy had 22.7% explants survival only. The medium having picloram 4 mg/l along with antibiotics (cefotaxime 500 mg/l and timentin 300 mg/l) was found best suitable for initial week callus induction. The standardized procedure gave overall 14.9% transformation efficiency in immature embryos and 9.8% in mature embryos and confirmed by gene-specific and promoter-specific PCR and southern analysis. These results indicate that the developed Agrobacterium-mediated transformation system is suitable for diverse wheat genotypes. The major obstacle for the implication of the CRISPR-based genome editing techniques is the non-availability of a suitable transformation system. Thus, the present system can be exploited to deliver the T-DNA into the wheat genome for CRISPR-based target modifications and transgene insertions.

  相似文献   

4.
High-frequency transformation of maize (Zea mays L.) using standard binary vectors is advantageous for functional genomics and other genetic engineering studies. Recent advances in Agrobacterium tumefaciens-mediated transformation of maize have made it possible for the public to transform maize using standard binary vectors without a need of the superbinary vector. While maize Hi-II has been a preferred maize genotype to use in various maize transformation efforts, there is still potential and need in further improving its transformation frequency. Here we report the enhanced Agrobacterium-mediated transformation of immature zygotic embryos of maize Hi-II using standard binary vectors. This improved transformation process employs low-salt media in combined use with antioxidant l-cysteine alone or l-cysteine and dithiothreitol (DTT) during the Agrobacterium infection stage. Three levels of N6 medium salts, 10, 50, and 100%, were tested. Both 10 and 50% salts were found to enhance the T-DNA transfer in Hi-II. Addition of DTT to the cocultivation medium also improves the T-DNA transformation. About 12% overall and the highest average of 18% transformation frequencies were achieved from a large number of experiments using immature embryos grown in various seasons. The enhanced transformation protocol established here will be advantageous for maize genetic engineering studies including transformation-based functional genomics.  相似文献   

5.
An efficient Agrobacterium-mediated transformation system, from which transgenic tropical maize plants were directly generated without previous crosses with laboratory or temperate lines, was established. Experimental evaluations were focused on two main issues: (i) establishment of appropriate tissue culture conditions, which induced somatic embryogenesis from the scutellum-cells, and (ii) the delivery of T-DNA toward these cells. High rates of embryogenic-calli, mainly generated from the embryo-scutellum, were obtained when 15 mg l−1 AgNO3 were included into the N6-based induction medium; rates up to 19 plants per gram were regenerated from these induced calli. Regarding the Agrobacterium strains evaluated for their transformation capability on the tropical maize line LPC13 used here, best results were obtained from the EHA105 cells when applied at OD550 nm = 0.5–1.0. Physical microwounds before the Agro-infection proved to be an excellent way to promoting both the T-DNA transferring toward the embryo-scutellum and the increasing of rates of transient GUS expression. The highest frequencies of transient GUS expression corresponding to the scutellum-cells as well as the regeneration of whole transgenic plants emerged from them, were obtained using immature embryos wounded by bombarding at 80 lb/in2 followed for vacuum infiltration before and during the Agro-infection, respectively, or using embryos wounded by 5 s-sonication (without vacuum infiltration) before the Agro-infection. Transformation frequencies up to 5.41% and 6.82% were obtained from the Agro-infected embryos wounded by particle-bombardment and sonication, respectively. Analyses of the progenies confirmed the sexual transmission of the introduced genes and their stable expression.  相似文献   

6.
A critical step in the development of a reproducible Agrobacterium tumefaciens mediated transformation system for a recalcitrant species, such as pearl millet, is the establishment of optimal conditions for efficient T-DNA delivery into target tissue from which plants can be regenerated. A multiple shoot regeneration system, without any intervening callus phase, was developed and used as a tissue culture system for Agrobacterium-mediated transformation. Agrobacterium super virulent strain EHA105 harboring the binary vector pCAMBIA 1301 which contains a T-DNA incorporating the hygromycin phosphotransferase (hpt II) and β-glucuronidase (GUS) genes was used to investigate and optimize T-DNA delivery into shoot apices of pearl millet. A number of factors produced significant differences in T-DNA delivery; these included optical density, inoculation duration, co-cultivation time, acetosyringone concentration in co-cultivation medium and vacuum infiltration assisted inoculation. The highest transformation frequency of 5.79% was obtained when the shoot apex explants were infected for 30 min with Agrobacterium O.D.600 = 1.2 under a negative pressure of 0.5 × 105 Pa and co-cultivated for 3 days in medium containing 400 μM acetosyringone. Histochemical GUS assay and polymerase chain reaction (PCR) analysis confirmed the presence of the GUS gene in putative transgenic plants, while stable integration of the GUS gene into the plant genome was confirmed by Southern analysis. This is the first report showing reproducible, rapid and efficient Agrobacterium-mediated transformation of shoot apices and the subsequent regeneration of transgenic plants in pearl millet. The developed protocol will facilitate the insertion of desirable genes of useful traits into pearl millet.  相似文献   

7.
Summary A characteristic phenotype of highly embryogenic explants along with the location of embryogenesis- and transformation-competent cells/tissues on immature cotyledons of soybean [Glycine max (L.) Merrill.] under hygromycin selection was identified. This highly embryogenic immature cotyledon was characterized with emergence of somatic embryos and incidence of browning/necrotic tissues along the margins and collapsed tissues in the mid-region of an explant incubated upwards on the selection medium. The influences of various parameters on induction of somatic embryogenesis on immature cotyledons following Agrobacterium tumefaciens-mediated transformation and selection were investigated. Using cotyledon explants derived from immature embryos of 5–8 mm in length, a 1∶1 (v/v; bacterial cells to liquid D40 medium) concentration of bacterial suspension and 4-wk cocultivation period significantly increased the frequency of transgenic somatic embryos. Whereas, increasing the infection period of explants or subjecting explants to either wounding or acetosyringone treatments did not increase the frequency of transformation. An optimal selection regime was identified when inoculated immature cotyledons were incubated on either 10 or 25 mgl−1 hygromycin for a 2-wk period, and then maintained on selection media containing 25 mgl−1 hygromycin in subsequent selection periods. However, somatic embryogenesis was completely inhibited when inoculated immature cotyledons were incubated on a kanamycin selection medium. These findings clearly demonstrated that the tissue culture protocols for transformation of soybean should be established under both Agrobacterium and selection conditions.  相似文献   

8.
Mature zygotic embryos of recalcitrant Christmas tree species eastern white pine (Pinus strobus L.) were used as explants for Agrobacterium tumefaciens strain GV3101-mediated transformation using the uidA (β-Glucuronidase) gene as a reporter. Influence of the time of sonication and the concentrations of protein phosphatase inhibitor (okadaic acid) and kinase inhibitor (trifluoperazine) on Agrobacterium-mediated transformation have been evaluated. A high transformation frequency was obtained after embryos were sonicated for 45–50 s, or treated with 1.5–2.0 μM okadaic acid or treated with 100–200 μM trifluoperazine, respectively. Protein phosphatase and kinase inhibitors enhance Agrobacterium-mediated transformation in eastern white pine. A 2–3.5-fold higher rate of hygromycin-resistant callus was obtained with an addition of 2 μM okadaic acid or 150 μM trifluoperazine or sonicated embryos for 45 s. Stable integration of the uidA gene in the plant genome of eastern white pine was confirmed by polymerase chain reaction (PCR), Southern and northern blot analyses. These results demonstrated that a stable and enhanced transformation system has been established in eastern white pine and this system would provide an opportunity to transfer economically important genes into this Christmas tree species. Communicated by W. H. Wu  相似文献   

9.
An improved method for the Agrobacterium infiltration of epicotyl segments of ‘Pineapple’ sweet orange [Citrus sinensis (L.) Osbeck] and ‘Swingle’ citrumelo [Citrus paradisi Macf. X Poncirus trifoliata (L.) Raf.] was developed in order to increase transformation frequency. Sonication-assisted Agrobacterium-mediated transformation (SAAT), vacuum infiltration, and a combination of the two procedures were compared with conventional Agrobacterium-mediated inoculation method (‘dipping’ method). It was observed that the morphogenic potential of the epicotyl segments decreased as the duration of SAAT and vacuum treatments increased. Transient GUS expression was not affected by the different SAAT treatments, but it was significantly enhanced by the vacuum infiltration treatments. The highest transformation efficiencies were obtained when the explants were subjected to a combination of SAAT for 2 s followed by 10 min of vacuum infiltration. PCR and Southern blot analysis of the uidA gene were used to confirm the integration of the transgenes. The transformation frequencies achieved in this study (8.4% for ‘Pineapple’ sweet orange and 11.2% for ‘Swingle’ citrumelo) are the highest ones reported for both cultivars.  相似文献   

10.
A high throughput genetic transformation system in maize has been developed with Agrobacterium tumefaciens mediated T-DNA delivery. With optimized conditions, stable callus transformation frequencies for Hi-II immature embryos averaged approximately 40%, with results in some experiments as high as 50%. The optimized conditions include N6 medium system for Agrobacterium inoculation, co-cultivation, resting and selection steps; no AgNo3 in the infection medium and adding AgNo3 in co-cultivation, resting and selection medium; Agrobacterium concentration at 0.5×109 c.f.u. ml–1 for bacterium inoculation; 100 mg l–1 carbenicillin used in the medium to eliminate Agrobacterium after inoculation; and 3 days for co-cultivation and 4 days for resting. A combination of all of these conditions resulted in establishing a high throughput transformation system. Over 500 T0 plants were regenerated and these plants were assayed by transgene expression and some of them were also analyzed by Southern hybridization. T1 plants were analyzed and transmission of transgenes to the T1 generation was verified. This represents a highly reproducible and reliable system for genetic transformation of maize Hi-II.  相似文献   

11.
In the present study, an efficient Agrobacterium-mediated gene transformation system was developed for ramie [Boehmeria nivea (L.) Gaud.] based on the examinations of several factors affecting plant transformation efficiency. The effects of Agrobacterium cell density, acetosyringone, co-cultivation temperature, co-cultivation duration, co-cultivation photoperiod and pH on stable transformation were evaluated. Agrobacterium at a concentration of OD = 0.5–0.8 improved the efficiency of transformation. Concentration of acetosyringone at 50 mg/L during co-cultivation significantly increased transformation efficiency. Co-cultivation at 20°C, in comparison to 15, 25 and 28°C, consistently resulted in higher transformation frequencies. A relatively short co-cultivation duration (3 days) was optimal for ramie transformation. Co-cultivation medium at pH 5.9 and co-cultivation in darkness both improved the transformation efficiencies of ramie. An overall scheme for producing transgenic ramie is presented, through which an average transformation rate from 10.5 to 24.7% in five ramie varieties was obtained. Stable expression and integration of the transgenes were confirmed by histochemical GUS assay, kanamycin painting assay, PCR and Southern blotting. This optimized transformation system should be employed for efficient Agrobacterium-mediated transformation of ramie. An erratum to this article can be found at  相似文献   

12.
Microprojectile- or Agrobacterium-mediated DNA delivery into calluses initiated from immature embryos has proven to be effective in transforming wheat. Yet, obtaining a large number of high quality immature embryos throughout the year is a laborious and delicate process. To circumvent these limitations, we propose an alternative technique applying the particle bombardment technology to calluses derived from fragmented mature embryos rather than immature tissues. The phosphinothricin acetyl transferase (bar) and -glucuronidase (gus) genes were used as selectable and screenable marker genes, respectively, to assess and optimise the performance of the proposed technique. Primary requirement for genetic transformation method development, the regeneration capacity of bombarded calluses was established. A preculture duration of 6 days was identified as optimal for DNA uptake and -glucuronidase (GUS) expression. The highest activity was recorded when calluses were selected. Long-term GUS expression studies (1–7weeks subsequent to bombardment), showed differentiated behaviours for tissues obtained from mature versus immature embryos. Notably, mature embryos exhibited the greatest number of cells stably expressing the reporter gene, thus providing an excellent source material for developing a stable transformation procedure.  相似文献   

13.
A protocol for Agrobacterium-mediated transformation was developed for embryogenic callus of an excellent climber species, Parthenocissus tricuspidata. A. tumefaciens strain EHA105 or C58 harboring the pCAMBIA2301 binary vector with the neomycin phosphotransferase (nptII) and β-glucuronidase (uidA) gene was used. Factors affecting the transformation efficiency, including the Agrobacterium strains, co-cultivation time, Agrobacterium concentration, and infection time, were evaluated. Strain EHA105 proved to be significantly better than C58, and 4 days of co-culture was critical for transformation. An Agrobacterium suspension at a concentration of 0.5–0.7 × 108 cells ml−1 (OD600 = 0.5–0.7) and an infection time of 40 min was optimal for transformation. By applying these optimized parameters, we recovered six independent transformed shoots that were kanamycin-resistant and contained the nptII gene, as verified by polymerase chain reaction (PCR) analysis. Southern blot analysis confirmed that T-DNA was stably integrated into the genome of three out of six PCR-positive lines. Furthermore, histochemical GUS assay revealed the expression of the uidA gene in kanamycin-resistant calli, somatic embryos, and leaves of transgenic plants.  相似文献   

14.
Introduction of large-DNA fragments into cereals by Agrobacterium-mediated transformation is a useful technique for map-based cloning and molecular breeding. However, little is known about the organization and stability of large fragments of foreign DNA introduced into plant genomes. In this study, we produced transgenic rice plants by Agrobacterium-mediated transformation with a large-insert T-DNA containing a 92-kb region of the wheat genome. The structures of the T-DNA in four independent transgenic lines were visualized by fluorescence in situ hybridization on extended DNA fibers (fiber FISH). By using this cytogenetic technique, we showed that rearrangements of the large-insert T-DNA, involving duplication, deletion and insertion, had occurred in all four lines. Deletion of long stretches of the large-insert DNA was also observed in Agrobacterium.  相似文献   

15.
An improved bacterial preculture protocol for Agrobacterium-mediated genetic transformation was developed for an economic tomato cultivar (Solanum lycopersicum L. cv. Zhongshu No. 4). Frequencies of transient gene expression and stable transformation were influenced by the density of Agrobacterium preculture and not the density of Agrobacterium used for infection. The improved protocol presented in this study depends on the use of an overnight-grown Agrobacterium preculture density of OD600 nm = 1.0, diluted 1/10th with Luria-Bertani (LB) liquid medium, and grown for an additional 4 h. Cultures are collected and resuspended in a liquid cocultivation medium-I, adjusted to OD600 nm = 0.1. Using this modified Agrobacterium preparation, transient β-glucuronidase expression was higher than 90%, and transformation efficiency reached 44.7%. This improved transformation is simple, repeatable, does not require a feeder layer, and most notably, the transformation frequency is stable and highly efficient.  相似文献   

16.
Huang X  Huang XL  Xiao W  Zhao JT  Dai XM  Chen YF  Li XJ 《Plant cell reports》2007,26(10):1755-1762
A high efficient protocol of Agrobacterium-mediated transformation of Musa acuminata cv. Mas (AA), a major banana variety of the South East Asia region, was developed in this study. Male-flower-derived embryogenic cell suspensions (ECS) were co-cultivated in liquid medium with Agrobacterium strain EHA105 harboring a binary vector pCAMBIA2301 carrying nptII and gusA gene in the T-DNA. Depending upon conditions and duration of co-cultivation in liquid medium, 0–490 transgenic plants per 0.5 ml packed cell volume (PCV) of ECS were obtained. The optimum duration of inoculation was 2 h, and the highest transformation frequency was achieved when infected ECS were co-cultivated in liquid medium first for 12 h at 40 rpm and then for 156 h at 100 rpm on a rotary shaker. Co-cultivation for a shorter duration (72 h) or shaking constantly at 100 rpm at the same duration gave 1.6 and 1.8 folds lower transformation efficiency, respectively. No transgenic plants were obtained in parallel experiments carried on semi-solid media. Histochemical GUS assay and molecular analysis in several tissues of the transgenic plants demonstrated that foreign genes were stably integrated into the banana genome. Compared to semi-solid co-cultivation transformation in other banana species, it is remarkable that liquid co-cultivation was much more efficient for transformation of the Mas cultivar, and was at least 1 month faster for regenerating transgenic plants.  相似文献   

17.
A genetic transformation system has been developed for selected embryogenic cell lines of hybrids Abies alba × A. cephalonica (cell lines AC2, AC78) and Abies alba × A. numidica (cell line AN72) using Agrobacterium tumefaciens. The cell lines were derived from immature or mature zygotic embryos on DCR medium containing BA (1 mg l−1). The T-DNA of plant transformation vector contained the β-glucuronidase reporter gene under the control of double dCaMV 35S promoter and the neomycin phosphotransferase selection marker gene driven by the nos promoter. The regeneration of putative transformed tissues started approximately 1 week after transfer to the selection medium containing 10 mg geneticin l−1. GUS activity was detected in most of the geneticin-resistant sub-lines AN72, AC2 and AC78, and the transgenic nature of embryogenic cell lines was confirmed by PCR approach. Plantlet regeneration from PCR-positive embryogenic tissues has been obtained as well. The presence of both gus and nptII genes was confirmed in 11 out of 36 analysed emblings.  相似文献   

18.
Lolium temulentum L. (Darnel ryegrass) has been proposed to be used as a model species for functional genomics studies in forage and turf grasses, because it is a self-fertile, diploid species with a short life cycle and is closely related to other grasses. Embryogenic calluses were induced from mature embryos of a double haploid line developed through anther culture. The calluses were broken up into small pieces and used for Agrobacterium tumefaciens-mediated transformation. A. tumefaciens strain EHA105 harboring pCAMBIA1301 and pCAMBIA1305.2 vectors were used to infect embryogenic callus pieces. Hygromycin was used as a selection agent in stable transformation experiments. Hygromycin resistant calluses were obtained after 4–6 weeks of selection and transgenic plants were produced in 10–13 weeks after Agrobacterium-mediated transformation. Fertile plants were readily obtained after transferring the transgenics to the greenhouse. Transgenic nature of the regenerated plants was demonstrated by Polymerase chain reaction (PCR), Southern hybridization analysis, and GUS staining. Progeny analysis showed Mendelian inheritance of the transgenes. The transformation system provides a valuable tool for functionality tests of candidate genes in forage and turf grasses.  相似文献   

19.
Transgenic herbicide-resistant sweet potato plants [Ipomoea batatas (L.) Lam.] were produced through Agrobacterium-mediated transformation system. Embryogenic calli derived from shoot apical meristems were infected with Agrobacterium tumefaciens strain EHA105 harboring the pCAMBIA3301 vector containing the bar gene encoding phosphinothricin N-acetyltransferase (PAT) and the gusA gene encoding β-glucuronidase (GUS). The PPT-resistant calli and plants were selected with 5 and 2.5 mg l−1 PPT, respectively. Soil-grown plants were obtained 28–36 weeks after Agrobacterium-mediated transformation. Genetic transformation of the regenerated plants growing under selection was demonstrated by PCR, and Southern blot analysis revealed that one to three copies of the transgene were integrated into the plant genome of each transgenic plant. Expression of the bar gene in transgenic plants was confirmed by RT-PCR and application of herbicide. Transgenic plants sprayed with Basta containing 900 mg l−1 of glufosinate ammonium remained green and healthy. The transformation frequency was 2.8% determined by herbicide application which was high when compared to our previous biolistic method. In addition, possible problems with multiple copies of transgene were also discussed. We therefore report here a successful and reliable Agrobacterium-mediated transformation of the bar gene conferring herbicide-resistance and this method may be useful for routine transformation and has the potential to develop new varieties of sweet potato with several important genes for value-added traits such as enhanced tolerance to the herbicide Basta.  相似文献   

20.
Li ZN  Fang F  Liu GF  Bao MZ 《Plant cell reports》2007,26(5):641-650
London plane tree (Platanus acerifolia Willd.) is an important tree in urban landscaping but it suffers from a number of negative traits which genetic engineering could be used to address. As with many woody species, P. acerifolia has appeared recalcitrant to genetic transformation. However, the recent development of a method for regenerating shoots from P. acerifolia leaf explants suggests that such material could be a target for gene-transfer. Using an Agrobacterium tumefaciens strain in which the T-DNA carries the histochemically detected reporter gene β-glucuronidase (GUS), we have followed the transfer of genes from Agrobacterium to leaf explants of Platanus acerifolia. Using this system, we have identified a set of inoculation and co-cultivation conditions (notably: the pre-treatment of leaf explants with 0.4 M mannitol, an inoculation period of 10 min, a bacterial OD600 of 0.8–1.0 and a co-cultivation period of 5 days) that permit a good frequency and reliability of transient gene-transfer. Optimum levels of antibiotics for bacterial elimination and kanamycin-resistant shoot regeneration were also established. By applying these parameters, we recovered eight independent stably transformed shoots that were kanamycin-resistant and contained the nptII T-DNA gene, as confirmed by PCR analysis. Furthermore, Southern blot analysis confirmed that, in at least five of these lines, the transgene was associated with high molecular weight DNA, so indicating integration into the plant genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号