首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The hydroxylation of prolyl-residues in eukaryotes is important in collagen biosynthesis and in hypoxic signalling. The hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs) are drug targets for the treatment of anaemia, while the procollagen prolyl hydroxylases and other 2-oxoglutarate dependent oxygenases are potential therapeutic targets for treatment of cancer, fibrotic disease, and infection. We describe assay development and inhibition studies for a procollagen prolyl hydroxylase from Paramecium bursaria chlorella virus 1 (vCPH). The results reveal HIF PHD inhibitors in clinical trials also inhibit vCPH. Implications for the targeting of the human PHDs and microbial prolyl hydroxylases are discussed.  相似文献   

2.
Hypoxia-inducible factor-1 (HIF) is regulated by oxygen-dependent prolyl hydroxylation. Of the three HIF prolyl hydroxylases (PHD1, 2 and 3) identified, PHD3 exhibits restricted substrate specificity in vitro and is induced in different cell types by diverse stimuli. PHD3 may therefore provide an interface between oxygen sensing and other signalling pathways. We have used co-purification and mass spectrometry to identify proteins that interact with PHD3. The cytosolic chaperonin TRiC was found to copurify with PHD3 in extracts from several cell types. Our results indicate that PHD3 is a TRiC substrate, providing another step at which PHD3 activity may be regulated.  相似文献   

3.
Prolyl hydroxylase domain-containing protein (PHD) inhibitors are useful as orally administered agents for the treatment of renal anemia. Based on the common structures of known PHD inhibitors, we found novel PHD inhibitor 1 with a 2-[(4-hydroxy-6-oxo-2,3-dihydro-1H-pyridine-5-carbonyl)amino]acetic acid motif. The PHD2-inhibitory activity, lipophilicity (CLogP), and PK profiles (hepatocyte metabolism, protein binding, and/or elimination half-life) of this inhibitor were used as the evaluation index to optimize the structure and eventually discovered clinical candidate 42 as the suitable compound. Compound 42 was demonstrated to promote the production of erythropoietin (EPO) following oral administration in mice and rats. The predicted half-life of this compound in humans was 1.3–5.6?h, therefore, this drug may be expected to administer once daily with few adverse effects caused by excessive EPO production.  相似文献   

4.
Prolyl hydroxylase, which is responsible for the hydroxylation of peptidyl proline residues, has been isolated and purified from the green alga Chlamydomonas reinhardii. The enzyme, which appears to be loosely associated with microsomal membranes, was released into solution by sonication in the presence of detergent. Purification was achieved by ion-exchange chromatography followed by affinity chromatography using the immobilized substrate poly-L-proline. Apart from its differing substrate specificity the enzyme appears to possess similar molecular characteristics to prolyl hydroxylase isolated from animal tissues: the active enzyme is a tetramer of about 240–250 kDa and nonidentical monomers of 65 and 60 kDa. The monomers are capsule shaped having a dimension of 12×7 nm.Abbreviations Da dalton - DEAE diethylaminoethyl - DTT dithiothreitol - Hepes 4-(2-hydroxymethyl)-1-piperazine ethanesulfonic acid - -KGA -ketoglutarate - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

5.
Prolyl hydroxylase domain 2 (PHD2) plays an important role in hypoxic sensing in humans. Here we report studies on the reactivity of cysteinyl residues of the catalytic domain of PHD2 using an approach in which nondenaturing electrospray ionization–mass spectrometry (ESI–MS) analyses were combined with the use of a thiol library and residue substitution. Among the seven cysteinyl residues of the PHD2 catalytic domain, Cys201 was found to be predominantly modified by thiols or N-ethylmaleimide. Selective modification of Cys201 was further demonstrated with methanethiosulfonate, a spin-labeled probe. The modified PHD2 will be useful in electron paramagnetic resonance studies on PHD2. The results demonstrate the use of a combined library/residue substitution/ESI–MS approach for analyzing residue reactivity.  相似文献   

6.
7.
We have discovered a novel complex crystal structure of the PHD2 enzyme with its inhibitor, the 2,8-diazaspiro[4.5]decan-1-one analogue 4b. The widely reported salt bridge between Arg383 of the enzyme and its inhibitors in all complex structures published thus far was not observed in our case. In our complex structure compound 4b forms several novel interactions with the enzyme, which include a hydrogen bond with Arg322, a π-cation interaction with Arg322, a π–π stacking with Trp389, and a π–π stacking with His313. Guided by the structural information, SAR studies were performed on the 2,8-diazaspiro[4.5]decan-1-one series leading to the discovery of compound 9p with high potency and good oral pharmacokinetic profile in mice.  相似文献   

8.
9.
A widely used generic assay for 2-oxoglutarate-dependent oxygenases relies upon monitoring the release of 14CO2 from labeled [1-14C]-2-oxoglutarate. We report an alternative assay in which depletion of 2-oxoglutarate is monitored by its postincubation derivatization with o-phenylenediamine to form a product amenable to fluorescence analysis. The utility of the procedure is demonstrated by assays with hypoxia-inducible factor hydroxylases where it was shown to give results similar to those reported with the radioactive assay, but it is more efficient and readily adapted to a multiwell format. The process should be amenable to the assay of other 2-oxoglutarate-consuming enzymes and to the discovery of inhibitors.  相似文献   

10.
The ferrous iron and 2-oxoglutarate (2OG) dependent oxygenases catalyse two electron oxidation reactions by coupling the oxidation of substrate to the oxidative decarboxylation of 2OG, giving succinate and carbon dioxide coproducts. The evidence available on the level of incorporation of one atom from dioxygen into succinate is inconclusive. Here, we demonstrate that five members of the 2OG oxygenase family, AlkB from Escherichia coli, anthocyanidin synthase and flavonol synthase from Arabidopsis thaliana, and prolyl hydroxylase domain enzyme 2 and factor inhibiting hypoxia-inducible factor-1 from Homo sapiens all incorporate a single oxygen atom, almost exclusively derived from dioxygen, into the succinate co-product.  相似文献   

11.
Cyclophilin 40 (CyP40), an immunophilin cochaperone present in steroid receptor-Hsp90 complexes, contains an N-terminal peptidylprolyl isomerase (PPIase) domain separated from a C-terminal Hsp90-binding tetratricopeptide repeat (TPR) domain by a 30-residue linker. To map CyP40 chaperone function, CyP40 deletion mutants were prepared and analysed for chaperone activity. CyP40 fragments containing the PPIase domain plus linker or the linker region and the adjoining TPR domain retained chaperone activity, whilst individually, the catalytic and TPR domains were devoid of chaperoning ability. CyP40 chaperone function then, is localized within the linker that forms a binding cleft with potential to accommodate non-native substrates.  相似文献   

12.
para-Hydroxybenzoate hydroxylase is a flavoprotein monooxygenase that catalyzes a reaction in two parts: reduction of the enzyme cofactor, FAD, by NADPH in response to binding p-hydroxybenzoate to the enzyme, then oxidation of reduced FAD by oxygen to form a hydroperoxide, which oxygenates p-hydroxybenzoate to form 3,4-dihydroxybenzoate. These diverse reactions all occur within a single polypeptide and are achieved through conformational rearrangements of the isoalloxazine ring and protein residues within the protein structure. In this review, we examine the complex dynamic behavior of the protein that enables regulated fast and specific catalysis to occur. Original research papers (principally from the past 15 years) provide the information that is used to develop a comprehensive overview of the catalytic process. Much of this information has come from detailed analysis of many specific mutants of the enzyme using rapid reaction technology, biophysical measurements, and high-resolution structures obtained by X-ray crystallography. We describe how three conformations of the enzyme provide a foundation for the catalytic cycle. One conformation has a closed active site for the conduct of the oxygen reactions, which must occur in the absence of solvent. The second conformation has a partly open active site for exchange of substrate and product, and the third conformation has a closed protein structure with the isoalloxazine ring rotated out to the surface for reaction with NADPH, which binds in a surface cleft. A fundamental feature of the enzyme is a H-bond network that connects the phenolic group of the substrate in the buried active site to the surface of the protein. This network serves to protonate and deprotonate the substrate and product in the active site to promote catalysis and regulate the coordination of conformational states for efficient catalysis.  相似文献   

13.
We investigated anti-colitic effects of N-(2-mercaptopropionyl)-glycine (NMPG), a diffusible antioxidant, in TNBS-induced rat colitis model and a potential molecular mechanism underlying the pharmacologic effect of the antioxidant. NMPG alleviated colonic injury and effectively lowered myeloperoxidase activity. Moreover, NMPG substantially attenuated expression of pro-inflammatory mediators in the inflamed colon. NMPG induced hypoxia-inducible factor-1α (HIF-1α) in human colon carcinoma cells, leading to elevated secretion of vascular endothelial growth factor (VEGF), a target gene product of HIF-1 involved in ulcer healing of gastrointestinal mucosa. NMPG induction of HIF-1α occurred by inhibiting HIF prolyl hydroxylase-2 (HPH-2), an enzyme that plays a major role in negatively regulating HIF-1α protein stability. In in vitro Von Hippel-Lindau protein binding assay, the inhibitory effect of NMPG on HPH-2 was attenuated by escalating dose of ascorbate but not 2-ketoglutarate, cofactors of the enzyme. Consistent with this, cell-permeable ascorbate significantly attenuated NMPG induction of HIF-1α in cells. Our data suggest that NMPG is an anti-colitic antioxidant that exerts its pharmacologic effects at least partly through activation of an ulcer healing pathway, HIF-1-VEGF.  相似文献   

14.
15.
为研究饲料中添加鱼油和豆油对中华绒螯蟹(Eriocheir sinensis)成蟹生长、免疫、代谢和耐低氧性能的影响,配制了添加不同比例鱼油和豆油的3种蟹用饲料,添加3%鱼油饲料组、3%豆油饲料组、3%鱼油和豆油混合组(1∶1,质量比),将其分别投喂中华绒螯蟹115 d后测量蟹体重、壳长和壳宽的变化,再将其放入溶解氧(dissolved oxygen,DO)为(9.06±0.06)mg/L和(2.57±0.44)mg/L的水体中,测定其免疫、代谢指标及耐低氧性能的变化。结果发现:投喂添加3种不同油脂饲料的中华绒螯蟹各组间体重无显著性差异;低氧胁迫对中华绒螯蟹代谢指标影响较大;添加鱼油和豆油混合油饲料组中华绒螯蟹血细胞密度、血蓝蛋白含量及超氧化物歧化酶、酸性和碱性磷酸酶、乳酸脱氢酶的活性都为最高,说明鱼油与豆油混合添加对中华绒螯蟹免疫和抗氧化能力有促进作用,并增加其耐低氧能力。  相似文献   

16.
17.
Two monoterpene glycosides, conjugated with gallic acid [globulusin A (1) and B (2)], together with four known compounds, cypellocarpin A (3), eucaglobulin (4), cuniloside (5) and (1S, 2S, 4R)-trans-2-hydroxy-1,8-cineole beta-d-glucopyranoside (6), were isolated from hot-water extracts of the leaves of Eucalyptus globulus. The structures of compounds 1 and 2 were determined by 1D, 2D NMR and MS spectroscopic analyses. The absolute stereochemistry of 1 was determined by correlating the spectroscopic data with those of synthetic compound 6 with a known configuration. Globulusin A (1) and B (2), cypellocarpin A (3) and eucaglobulin (4), scavenged DPPH free radicals and globulusin A (1) showed a higher antioxidant activity than the other tested compounds, with an IC50 of 3.8microM. Globulusin A (1) and eucaglobulin (4) concentration-dependently suppressed inflammatory cytokine production, tumor-necrosis factor-alpha and interleukin-1beta in cultured human myeloma THP-1 cells co-stimulated with phorbol myristate acetate. These compounds also inhibited melanogenesis in cultured murine melanoma B16F1 cells, without any significant cytotoxicity. These results suggested that globulusin A (1) and eucaglobulin (4), which were isolated as antioxidants from E. globulus, also had anti-inflammatory as well as anti-melanogenesis activity.  相似文献   

18.
Recent studies of mouse mutant aphakia have implicated the homeobox gene Pitx3 in the survival of substantia nigra dopaminergic neurons, the degeneration of which causes Parkinson's disease. To directly investigate a role for Pitx3 in midbrain DA neuron development, we have analysed a line of Pitx3-null mice that also carry an eGFP reporter under the control of the endogenous Pitx3 promoter. We show that the lack of Pitx3 resulted in a loss of nascent substantia nigra dopaminergic neurons at the beginning of their final differentiation. Pitx3 deficiency also caused a loss of tyrosine hydroxylase (TH) expression specifically in the substantia nigra neurons. Therefore, our study provides the first direct evidence that the aphakia allele of Pitx3 is a hypomorph and that Pitx3 is required for the regulation of TH expression in midbrain dopaminergic neurons as well as the generation and/or maintenance of these cells. Furthermore, using the targeted GFP reporter as a midbrain dopaminergic lineage marker, we have identified previously unrecognised ontogenetically distinct subpopulations of dopaminergic cells within the ventral midbrain based on their temporal and topographical expression of Pitx3 and TH. Such an expression pattern may provide the molecular basis for the specific dependence of substantia nigra DA neurons on Pitx3.  相似文献   

19.
CMP-N-acetylneuraminate hydroxylase was isolated from mouse liver high speed supernatant with a yield of 0.4% and an apparent 1000-fold purification. The enzyme is a monomeric protein with a molecular weight of 66 kDa, as determined by gel filtration and SDS-PAGE. The hydroxylase system was reconstituted with Triton X-100-solubilized mouse liver microsomes and purified soluble or microsomal forms of cytochrome b5 reductase and cytochrome b5. The systems were characterized in detail and kinetic parameters for each system were determined.Abbreviations Neu5Ac N-acetyl--d-neuraminic acid - Neu5Gc N-glycoloyl--d-neuraminic acid - CMP-Neu5Ac cytidine-5-monophospho-N-acetylneuraminic acid - CMP-Neu5Gc cytidine-5-monophospho-N-glycoloylneuraminic acid - TCA trichloroacetic acid - Chaps 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulphonate - SOD superoxide dismutase Enzymes: CMP-N-acetylneuraminate: NADH oxidoreductase (N-acetyl hydroxylating) (E.C. 1.14.13.45), CMP-Neu5Ac hydroxylase; NADH: cytochrome b5 oxidoreductase (E.C. 1.6.2.2), cytochrome b5 reductase; hydrogen peroxide: hydrogen peroxide oxidoreductase, catalase (E.C. 1.11.1.6); superoxide:superoxide oxidoreductase (E.C. 1.15.1.1), superoxide dismutase.This paper is dedicated to Professor Harry Schachter on the occasion of his 60th birthday.  相似文献   

20.
We show that MAD3 encodes a novel 58-kD nuclear protein which is not essential for viability, but is an integral component of the spindle checkpoint in budding yeast. Sequence analysis reveals two regions of Mad3p that are 46 and 47% identical to sequences in the NH(2)-terminal region of the budding yeast Bub1 protein kinase. Bub1p is known to bind Bub3p (Roberts et al. 1994) and we use two-hybrid assays and coimmunoprecipitation experiments to show that Mad3p can also bind to Bub3p. In addition, we find that Mad3p interacts with Mad2p and the cell cycle regulator Cdc20p. We show that the two regions of homology between Mad3p and Bub1p are crucial for these interactions and identify loss of function mutations within each domain of Mad3p. We discuss roles for Mad3p and its interactions with other spindle checkpoint proteins and with Cdc20p, the target of the checkpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号