首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The human oviduct derived embryotrophic factor-3 (ETF-3) contains complement protein-3 (C3) and its derivates. Although C3 is not embryotrophic, it is converted into the embryotrophic derivative, iC3b in the presence of embryos and oviductal cells. The regulation of C3 production in the oviduct is not known. The objectives of this study were to investigate the effects of presence of preimplantation embryos and hormones on C3 expression in the oviducts in vitro and in vivo. The expression of C3 in the oviduct of pregnant mice was compared to that of pseudo-pregnant mice. The hormonal action on C3 expression was studied in the ovariectomized mouse oviducts and human oviductal epithelial (OE) cells. The results showed that the level of C3 mRNA in the mouse oviduct was high on Day 1 and Day 2, but decreased to a minimum on Day 4 of pregnancy, whereas that of pseudo-pregnancy remained relatively stable within the same period. The protein levels of C3 and iC3b specific fragments, alpha-115 and alpha-40, respectively in the mouse oviductal luminal fluid were highest on Day 3 of pregnancy, when the embryos were expected to be most sensitive to the embryotrophic activity of ETF-3. Estrogen elevated C3 expression in the ovariectomized mouse oviduct and the OE cells. Progesterone suppressed estrogen-induced C3 expression in the mouse oviduct, but had no effect on OE cells. In conclusion, the presence of embryo and steroid hormones regulate the synthesis and secretion of oviductal C3.  相似文献   

3.
Mouse embryos at different stages of development were cocultured with human oviduct cells or cultured in the presence of oviduct-derived embryotrophic factor-1, -2, and -3 (ETF-1, -2, and -3) for various amounts of time within the preimplantation period. Cocultures that included the period from 48 to 72 h post-hCG stimulated cell division and increased the cell numbers in the inner cell mass (ICM) of the exposed blastocyst. Exposure of embryos to oviductal cells from 96 to 120 h post-hCG increased the cell number in the trophectoderm (TE), blastocyst size, hatching rate, attachment, and in vitro spreading of the blastocyst. ETF-1 and ETF-2 affected embryos between 48 and 72 h post-hCG by increasing the number of cells in the ICM. In contrast, ETF-3 had a more profound effect on embryos that were exposed from 96 to 120 h post-hCG, where it mostly affected the development of TE cells, leading to higher hatching rate. Human oviductal cells improved mouse embryo development partly by the production of high molecular weight embryotrophic factors. These factors had differential effects on mouse embryo development.  相似文献   

4.
The E6 and E7 oncoproteins of human papillomavirus (HPV) play a major role in the development of cervical carcinoma. In this study, a recombinant adenovirus that expresses the bovine papillomavirus (BPV) E2, which has been shown to inhibit HPV early gene expression, was delivered to two HPV-immortalized cell lines as well as CaSki, a cervical carcinoma cell line. We tested whether the carcinoma and the immortal cells were equally affected by the expression of BPV E2. In all cell lines, BPV E2-mediated inhibition of HPV E6/E7 expression caused a dramatic suppression of cell growth, being preceded by the activation of the p53-Rb growth-inhibitory pathway, and a decrease in hTERT mRNA expression and telomerase activity. This suggests that the HPV E6 and E7 proteins are required not only for induction of the proliferative phenotype and telomerase activity, but also for their maintenance. In both the carcinoma and the immortal lines, the number of cells with enlarged cytoplasm and senescence-associated beta-galactosidase activity, which are markers for cellular senescence, was significantly increased. These results suggest that a senescence program exists in cells immortalized by HPV DNA as well as in cervical carcinoma cells.  相似文献   

5.
The oviduct-derived embryotrophic factor, ETF-3, enhances the development of trophectoderm and the hatching process of treated embryos. Monoclonal anti-ETF-3 antibody that abolishes the embryotrophic activity of ETF-3 recognized a 115-kDa protein from the conditioned medium of immortalized human oviductal cells. Mass spectrometry analysis showed that the protein was complement C3. Western blot analysis using an antibody against C3 confirmed the cross-reactivities between anti-C3 antibody with ETF-3 and anti-ETF-3 antibody with C3 and its derivatives, C3b and iC3b. Both derivatives, but not C3, were embryotrophic. iC3b was most efficient in enhancing the development of blastocysts with larger size and higher hatching rate, consistent with the previous reported embryotrophic activity of ETF-3. Embryos treated with iC3b contained iC3b immunoreactivity. The oviductal epithelium produced C3 as evidenced by the presence of C3 immunoreactivity and mRNA in the human oviduct and cultured oviductal cells. Cyclical changes in the expression of C3 immunoreactivity and mRNA were also found in the mouse oviduct with the highest expression at the estrus stage. Molecules involving in the conversion of C3b to iC3b and binding of iC3b were present in the human oviduct (factor I) and mouse preimplantation embryo (Crry and CR3), respectively. In conclusion, the present data showed that the oviduct produced C3/C3b, which was converted to iC3b to stimulate embryo development.  相似文献   

6.
Previous studies have shown that the E7 gene of human papillomavirus (HPV) type 16 or 18 alone was sufficient for immortalization of human foreskin epithelial cells (HFE) and that the efficiency was increased in cooperation with the respective E6 gene, whereas the HPV6 E6 or E7 gene was not active in HFE. To detect weak immortalizing activities of the HPV6 genes, cells were infected with recombinant retroviruses containing HPV genes, alone and in homologous and heterologous combinations. The HPV6 genes, alone or together (HPV6 E6 plus HPV6 E7), were not able to immortalize cells. However the HPV6 E6 gene, in concert with HPV16 E7, increased the frequency of immortalization threefold over that obtained with HPV16 E7 alone. Interestingly, 6 of 20 clones containing the HPV16 E6 gene and the HPV6 E7 gene were immortalized, whereas neither gene alone was sufficient. Thus, the HPV6 E6 and E7 genes have weak immortalizing activities which can be detected in cooperation with the more active transforming genes of HPV16. Acute expression of the HPV6 and HPV16 E6 and E7 genes revealed that only HPV16 E7 was able to stimulate the proliferation of cells in organotypic culture, resulting in increased expression of the proliferative cell nuclear antigen and the formation of a disorganized epithelial layer. Additionally, combinations of genes that immortalized HFE cells (HPV16 E6 plus HPV16 E7, HPV16 E6 plus HPV6 E7, and HPV6 E6 plus HPV16 E7) also stimulated proliferation.  相似文献   

7.
To evaluate the effect of HPV16 E6/E7 on drug sensitivity, primary human OSE cells were infected with HPV16 E6/E7 expressing retrovirus and then exposed to chemotherapeutic agents. Apoptosis induced by mitomycin C was dose-dependent in both primary OSE and E6E7/OSE cells. E6E7/OSE cells were more sensitive to mitomycin C than parental OSE cells. HPV16 E6/E7 also sensitized OSE cells to 5-FU and its derivative 5-FUdR, but only at low doses. This phenomenon was also observed in cervical cancer cells and was independent of thymidylate synthase, a target of thymine and thymidine analogues. We conclude that HPV16 E6/E7 specifically modulates the activity of 5-FU and 5-FUdR, and confers OSE cells hypersensitivity to low-dose but not high-dose 5-FU and 5-FUdR. Molecular analysis indicates that induction of p53 and p21, and suppression of pRB are associated with apoptosis induced by 5-FUdR and may partly explain the hypersensitivity of E6E7/OSE cells to low-dose 5-FUdR.  相似文献   

8.
Prostaglandin E2 secretion by oviductal transport-stage equine embryos.   总被引:1,自引:0,他引:1  
This study was conducted to identify embryonic products whose secretion was temporally associated with the oviductal transport period of the mare. Chemicals secreted by oviductal-transport-stage equine embryos were identified by incubating Day 6 or Day 7 early uterine embryos with 35S-methionine/cysteine, 3H-progesterone, or 3H-arachidonic acid for 24 h, and subsequently identifying radioactively labeled proteins (SDS-PAGE; n = 3 embryos), steroids (HPLC; n = 3 embryos), or prostaglandins (HPLC; n = 3 embryos) in the culture medium. Early uterine embryos secreted 116.1 +/- 45.5 pg of prostaglandin (PG) E2/embryo, 1.0 +/- 0.2 pg of 17 alpha-hydroxy progesterone/embryo, 4.8 +/- 0.6 pg of androstenedione/embryo, and 11.5 +/- 4.5 pg of PGF2 alpha/embryo. They did not secrete detectable quantities of protein, testosterone, or estradiol-17 beta. A second experiment was conducted to measure temporal changes in embryonic PGE2 secretion during the oviductal and early uterine period. Day 3, Day 4, Day 5, and Day 6 embryos (n = 8 embryos/day) were incubated with 3H-arachidonic acid for 24 h, and the concentration of 3H-PGE2 in the culture medium was subsequently measured by HPLC. Embryos did not secrete detectable amounts of PGE2 prior to the expected time of oviductal transport (Day 3 and Day 4). They secreted 5.7 +/- 1.0 pg of PGE2/embryo immediately before and during the expected time of oviductal transport (Day 5), and they secreted significantly of PGE2/embryo immediately before and during the expected time of oviductal transport (Day 5), and they secreted significantly (p less than 0.01) higher amounts (42.0 +/- 11.5 pg) of PGE2/embryo immediately after uterine entry (Day 6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Human papillomavirus and cervical cancer   总被引:3,自引:0,他引:3  
Kanda T  Kukimoto I 《Uirusu》2006,56(2):219-230
Human papillomavirus (HPV) is a small non-enveloped icosahedral virus with a circular double-stranded DNA genome of 8 kilo base pairs. HPV particles reach and infect the basal cells of the stratified epithelia through small epithelial lesions. In the basal cells the viral DNA is maintained as episomes, which start to replicate when the host cells initiate terminal differentiation. In these differentiating cells the degradation of p53 by the E6 protein and the abrogation of the pRb functions by the E7 protein lead to the reactivation of the DNA synthesis machinery. After virus propagation the host cells usually die. On the other hand, in some of the infected cells, the E6 and E7 genes are integrated on rare occasion into cell DNA. The cell continuously expressing the E6 and E7 proteins from the integrated genes is immortalized and sometimes acquires malignant phenotype induced by the accumulated damages to DNA. Of more than 100 HPV genotypes recorded to date, 13 including types 16 and 18 are associated with cervical cancer. Expression of HPV major capsid protein L1 in some cultured cells results in production of virus-like particles (VLPs). The VLPs of types 6, 11, 16, and 18 were used as a prophylactic vaccine in recent clinical trials and shown to successfully induce type-specific neutralizing antibodies in the recipients.  相似文献   

10.
11.
Human papillomavirus (HPV) is small, double-stranded DNA virus that infects mucosal and cutaneous epithelial tissue. HPV is sexually transmitted and the viral DNA replicates extrachromosomally. The virus is non-enveloped and has an icosahedral capsid. There are approximately 118 types of HPV, which are characterized as high-risk or lowrisk types. High-risk HPVs cause malignant transformation while the low-risk ones cause benign warts and lesions. The expression of E6 and E7 is normally controlled during the normal viral life cycle when viral DNA replicates extrachromosomally. HPV E6 and E7 oncoproteins are overexpressed when the viral genome integrates into the host DNA. Deregulated overexpression of E6 and E7 oncoproteins can cause several changes in cellular pathways and functions leading to malignant transformation of cells and tumorigenesis. In this review, we focus on several cellular mechanisms and pathways that are altered in the presence of E6 and E7, the target proteins of E6 and E7 inside the host cell and how they contribute to the development of the transformed phenotype.  相似文献   

12.
Human papillomavirus type 16 (HPV16) E6 and E7 are selectively retained and expressed in HPV16-associated human genital tumors. E6 is active in several cell culture assays, including transformation of NIH 3T3 cells, trans activation of the adenovirus E2 promoter, and cooperation with E7 to immortalize normal human keratinocytes. Biochemically, the HPV16 E6 protein has been shown to bind to tumor suppressor protein p53 in vitro and induce its degradation in a rabbit reticulocyte lysate. To examine the relationship between the various biological activities of E6 and inactivation of p53, we tested the abilities of dominant negative mutants of p53 to substitute functionally for E6 in the three cell culture assays. While wild-type p53 inhibited keratinocyte proliferation, both mouse and human mutant p53s, in conjunction with E7, increased proliferation of the keratinocytes, resulting in generation of immortalized lines. However, in contrast to E6, mutant p53 was unable to induce transformation or trans activate the adenovirus E2 promoter in NIH 3T3 cells. These results suggest that inactivation of wild-type p53 is necessary for HPV-induced immortalization of human keratinocytes and that different or additional activities are required for E6-dependent transformation and trans activation of NIH 3T3 cells.  相似文献   

13.
Kim SH  Kim KS  Lee EJ  Kim MO  Park JH  Cho KI  Imakawa K  Hyun BH  Chang KT  Lee HT  Ryoo ZY 《Life sciences》2004,75(25):3035-3042
Human papillomavirus type 16 (HPV16) has been known as a major causative factor for the development of uterine cervical carcinomas. To investigate the in vivo activity of HPV16 expressed in squamous epithelia, transgenic mice harboring HPV16 E6/E7 with human keratin 14 (hK14) promoter were generated. Grossly, hK14 driven HPV16 E6/E7 transgenic mice exhibited multiple phenotypes, including wrinkled skin that was apparent prior to the appearance of hair in neonates, thickened ears, and loss of hair in adults. Transgenic mice with phenotype exhibiting severe wrinkled skin and a lack of hair growth died at the age of 3-4 weeks. Histological analysis revealed that in transgenic mice survived beyond the initial 3-4 weeks, HPV16 E6/E7 causes epidermal hyperplasia in multiple transgenic lineages with high incidence of transgene penetration. This epithelial hyperplasia was characterized by an expansion of the proliferating compartment and keratinocytes, and was associated with hyperkeratosis. Such activities were significantly higher in the skin of transgenic mice than that of the normal mice. Thus, these transgenic mice appeared to be useful for the expression of HPV16 E6/E7 gene and subsequent analysis on hyperkeratosis.  相似文献   

14.
The transforming proteins of DNA tumor viruses SV40, adenovirus and human papillomaviruses (HPV) bind the retinoblastoma and p53 cell cycle regulatory proteins. While the binding of SV40 large T antigen and the adenovirus E1B 55 kDa protein results in the stabilization of the p53 protein, the binding of HPV16 and 18 E6 results in enhanced degradation in vitro. To explore the effect of viral proteins on p53 stability in vivo, we have examined cell lines immortalized in tissue culture by HPV18 E6 and E7 or SV40 large T antigen, as well as cell lines derived from cervical neoplasias. The half-life of the p53 protein in non-transformed human foreskin keratinocytes in culture was found to be approximately 3 h while in cell lines immortalized by E6 and E7, p53 protein half-lives ranged from 2.8 h to less than 1 h. Since equivalent levels of E6 were found in these cells, the range in p53 levels observed was not a result of variability in amounts of E6. In keratinocyte lines immortalized by E7 alone, the p53 half-life was found to be similar to that in non-transformed cells; however, it decreased to approximately 1 h following supertransfection of an E6 gene. These observations are consistent with an interaction of E6 and p53 in vivo resulting in reductions in the stability of p53 ranging between 2- and 4-fold. We also observed that the expression of various TATA containing promoters was repressed in transient assays by co-transfection with plasmids expressing the wild-type p53 gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Human papilloma virus (HPV) infection represents an emerging risk factor in head and neck squamous cell carcinoma (HNSCC). In contrast to HPV-negative HNSCC, most cases of HPV-positive HNSCC encode wild-type p53, although the p53 protein in these cells is rapidly degraded via HPV E6-mediated ubiquitination and subsequent proteasomal degradation. This unique feature of HPV-positive HNSCC has raised hope that liberation of wild-type p53 from the E6 protein may have therapeutic benefit in this disease. Indeed, suppression of E6 expression promotes apoptosis in HPV-positive HNSCC cell lines. However, the role of p53 in mediating this cell death has not been determined. Here, we demonstrate that siRNAs targeting the E6/E7 RNA, or treatment with the proteasome inhibitor bortezomib, resulted in upregulation of functional p53 and p53 gene targets in three HPV-positive HNSCC cell lines, but not in HPV-negative HNSCC cells. Apoptosis induced by E6/E7 siRNA in HPV-positive cells was found to be dependent on p53, while bortezomib-induced cell death was modestly p53-dependent. Treatment with subtoxic doses of bortezomib led to cell cycle arrest in HPV-positive, but not HPV-negative HNSCC cells. Moreover, this cell cycle arrest was mediated by p53 and the cell cycle inhibitor p21, the product of a p53 target gene. Collectively, these findings establish that wild-type p53 encoded by HPV-positive HNSCC cells, once liberated from HPV E6, can play important roles in promoting apoptosis and cell cycle arrest.  相似文献   

16.
The human papillomavirus type 16 (HPV16) E7 is a major viral oncoprotein that is phosphorylated by casein kinase II (CKII). Two S100 family calcium-binding proteins, macrophage inhibitory-related factor protein 8 (MRP-8) and MRP-14, form a protein complex, MRP-8/14, that inactivates CKII. The MRP-8/14 protein complex may inhibit CKII-mediated E7 phosphorylation and therefore may alter its interaction with cellular ligands and reduce E7 oncogenic activity. We examined the inhibitory effect of the MRP-8/14 complex on CKII activity and HPV16 E7 phosphorylation. We have shown that CKII activity and HPV16 E7 phosphorylation were inhibited by uptake of exogenous MRP-8/14 and activation of endogenous MRP-8/14. MRP-8/14-mediated inhibition of E7 phosphorylation occurred at the G1 phase of the cell cycle. Analysis of MRP expression in primary keratinocytes and in HPV16- and 18-transformed cervical and foreskin epithelial cell lines showed that expression of MRP-8, MRP-14, and the MRP-8/14 complex was detected only in primary untransformed keratinocytes and not in the HPV-infected immortalized epithelial cells. CKII activity in HPV-immortalized keratinocytes was approximately fourfold higher than in HPV-negative primary keratinocytes. Treatment of HPV-positive immortalized epithelial cells with exogenous MRP-8/14 resulted in E7 hypophosphorylation and complete inhibition of cell growth within 2 weeks, compared with HPV-negative primary and immortalized HPV-negative cervical epithelial cells, which showed 25 and 40% growth inhibition, respectively. Together these results suggests that the MRP-8/14 protein complex in HPV-infected epithelial cells may play an important role in regulation of CKII-mediated E7 phosphorylation and inhibition of its oncogenic activity.  相似文献   

17.
Human papillomavirus (HPV) infection, particularly type 16, is causally associated with the development of cervical cancer. The E6 and E7 proteins of HPV are constitutively expressed in cervical carcinoma cells making them attractive targets for CTL-based immunotherapy. However, few studies have addressed whether cervical carcinomas can process and present HPV E6/E7-derived Ags for recognition by CTL. We generated HLA-A*0201-restricted CTL clones against HPV16 E6(29-38) that recognized HPV16 E6 Ags transfected into B lymphoblastoid cells. These CTL were unable to recognize HLA-A*0201(+) HPV16 E6(+) cervical carcinoma cell lines even when the level of endogenous HPV16 E6 in these cells was increased by transfection. This defect in presentation of HPV16 E6(29-38) correlated with low level expression of HLA class I, proteasome subunits low molecular mass protein 2 and 7, and the transporter proteins TAP1 and TAP2 in the cervical carcinoma cell lines. The expression of all of these proteins could be up-regulated by IFN-gamma, but this was insufficient for CTL recognition unless the level of HPV16 E6 Ag was also increased by transfection. CTL recognition of the HPV16 E6(29-38) epitope in 721.174 B cells was dependent on TAP expression but independent of immunoproteasome expression. Collectively, these findings suggest that presentation of the HPV16 E6(29-38) epitope in cervical carcinoma cell lines is limited both by the level of TAP expression and by the low level or availability of the source HPV E6 oncoprotein. These observations place constraints on the use of this, and potentially other, HPV-derived CTL epitopes for the immunotherapy of cervical cancer.  相似文献   

18.
应用短发夹RNA(Short hairpin RNA,shRNA)表达载体抑制宫颈癌Hela细胞株HPV18 E6、E7基因的表达。应用已鉴定的shRNA表达载体pHPV1、pHPV2转染Hela细胞,G418筛选阳性细胞,建立稳定转染细胞株;倒置荧光显微镜检测转染情况;提取细胞内总RNA,RT-PCR方法检测HPV18 E6、E7 mRNA;WesternBlot检测HPV18 E6、E7蛋白表达的变化;采用灰度分析软件对PCR扩增条带与蛋白质条带进行灰度分析。pHPV1实验组细胞内HPV18 E6、E7 mRNA含量分别为阴性对照组的31%、38%,E6、E7蛋白分别为阴性对照组的37%、31%;pHPV2实验组细胞内HPV18 E6、E7 mRNA含量分别为阴性对照组的54%、77%,E6、E7蛋白分别为阴性对照组的52%、83%。pHPV1、pHPV2表达载体能抑制Hela细胞HPV18 E6、E7的表达,针对外显子区434-452的pHPV1抑制作用更强。  相似文献   

19.
Summary Human papillomavirus (HPV) E6 and E7 are consistently expressed and are responsible for the malignant transformation of HPV-associated lesions. Thus, E6 and E7 represent ideal targets for therapeutic HPV vaccine development. We have previously used the gene gun approach to test several intracellular targeting and intercellular spreading strategies targeting HPV-16 E7. These strategies include the use of the sorting signal of lysosome-associated membrane protein (LAMP-1), Mycobacterium tuberculosis heat shock protein 70 (HSP70), calreticulin (CRT) and herpes simplex virus type 1 (HSV-1) VP22 proteins. All of these strategies have been shown to be capable of enhancing E7-DNA vaccine potency. In the current study, we have characterized DNA vaccines employing these intracellular targeting or intercellular spreading strategies targeting HPV-16 E6 for their ability to generate E6-specific CD8+ T cell immune responses and antitumor effects against an E6-expressing tumor cell line, TC-1, in C57BL/6 mice. We found that all the intracellular targeting strategies (CRT, LAMP-1, HSP70) as well as the intercellular spreading strategy (VP22) were able to enhance E6 DNA vaccine potency, although the orientation of HSP70 linked to E6 antigen in the E6 DNA vaccine appears to be important for the HSP70 strategy to work. The enhanced E6-specific CD8+ T cell immune response in vaccinated mice also translated into potent antitumor effects against TC-1 tumor cells. Our data indicate that all of the intracellular targeting and intercellular spreading strategies that have been shown to enhance E7 DNA vaccine potency were also able to enhance E6 DNA vaccine potency.  相似文献   

20.
The selective retention and expression of the E6-E7 region of human papillomavirus (HPV) types 16 and 18 in cervical carcinomas suggests that these viral sequences play a role in the development of genital neoplasia. Each of three possible gene products, E6, E6*, and E7, from this region of HPV-18 were examined for transforming properties in several types of rodent cells. We have found that in immortalized fibroblasts, both E6 and E7 (but not E6*) are capable of inducing anchorage-independent growth. In rat embryo cells, the HPV-18 E7 open reading frame was an effective immortalizing agent and complemented an activated ras oncogene for transformation. In both immortalized and primary cells, transformation was observed when the HPV-18 sequences were expressed from either the HPV-18 promoter or a heterologous promoter. The E6-E7 region is not, however, the sole transforming domain of HPV-18, since another portion of the early region, possibly E5, also exhibited transforming capability in immortalized fibroblasts. The development of human cervical carcinomas may therefore involve a series of steps involving multiple viral and cellular gene products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号