首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physiological and osmotic roles of sucrose during black spruce (Picea mariana (Mill.) B.S.P.) embryo maturation were investigated. The results showed that when both sucrose and mannitol were present in the medium, the optimum sucrose concentration varied between 4% and 6%. From these data, mannitol does not apparently replace sucrose during the maturation of somatic embryos and therefore it might not be a suitable osmoticum. For the media supplemented with 4% to 12% sucrose and various concentrations of mannitol, the osmotic pressure of the medium rose during maturation, particularly for the highest sucrose concentrations (7% to 12%). Medium containing 3% each of fructose and glucose produced fewer mature embryos compared to the medium with 6% sucrose. An increment in the osmotic potential was observed in medium with 6% sucrose in contrast to that containing 3% each of fructose and glucose. Sugar analysis revealed that the sucrose hydrolysis in the medium was detectable within 1 week of incubation and continued throughout the maturation period. Moreover, no significant uptake of the sugars was detected, since the total amount of fructose, glucose and sucrose remained constant. Our results indicate that the action of sucrose on embryo maturation is mostly achieved through an osmotic control.  相似文献   

2.
Summary The development of Norway spruce (Picea abies (L.) Karst.) somatic embryos on a maturation medium was accompanied by changes in nonstructural carbohydrate status. During embryo maturation, the content of total soluble sugars in the embryonal suspensor mass decreased and the partitioning between sucrose and hexoses changed considerably in favor of sucrose. Developing somatic embryos were mainly responsible for these changes. Osmotic stress caused by the presence of 3.75% polyethylene glycol (PEG) in the maturation medium (decrease in osmotic potential by 52.5 kPa) resulted in dramatic changes in the content of endogenous saccharides. There was a lower total carbohydrate content in the embryonal suspensor mass grown on the medium containing PEG in comparison with the untreated control. Isolated embryos from later stages of embryo development contained mainly sucrose with a small amount (20%) of fructose and nearly no glucose. A further increase in PEG concentration in the medium (7.5%; decrease in osmotic potential by 112.5 kPa compared to the maturation medium) led to a large increase in the total endogenous sugar content. This increase in sugars was a result of the enhanced content of sucrose, fructose, and glucose. The increased glucose content was in contrast to embryos grown on the medium with lower or no PEG content.  相似文献   

3.
Different concentrations of l-glutamine and different nitrogen sources in the medium were compared during maturation of black spruce (Picea mariana (Mill.) B.S.P.) somatic embryos. l-glutamine can be used as the sole nitrogen source for the maturation of Picea mariana somatic embryos at 2 to 3 gl-1. A significantly lower number of somatic embryos was obtained on a medium prepared with only inorganic nitrogen. Compared with a medium supplement to inorganic nitrogen resulted in a twofold increase in the number of embryos for six genotypes. The nitrogen source and concentration in the maturation medium significantly affected the germination sensus stricto of somatic embryos (radicle appearance), but not their development into plantlets; at the time of epicotyl appearance, an effect of the nitrogen source was no longer found. A comparison of the development of somatic embryos into plantlets from seven genotypes showed that the genotype had more effect in terms of epicotyl appearance and in conversion rate than the nitrogen source present in the maturation medium.Abbreviations HLM-1 half-Litvays's medium with 10 M 2,4-D and 5 M BA - i only inorganic nitrogen in the medium - i+1 gG inorganic nitrogen plus 1 g l-1 glutamine in the medium - SMM standard maturation medium - 2.5gG only 2.5 g l-1 glutamine in the medium  相似文献   

4.
The present study was conducted to understand the role of sucrose in the medium on the maturation of black spruce and white spruce somatic embryos. A maturation medium containing 6% sucrose, which hydrolyzed into glucose and fructose, gave significantly more embryos than a medium containing 3.16% of each glucose and fructose. Preventing the complete sucrose hydrolysis by a daily transfer of the tissues onto fresh medium significantly decreased the yield of somatic embryos compared to when sucrose was allowed to complete its hydrolysis. This reduction was not due to the manipulation of the tissues during the transfer, since a daily in situ transfer did not affect embryo production. To verify if the better embryo production observed on a medium containing 6% sucrose was due to the increasing osmotic pressure of the medium, this increasing osmotic pressure was simulated with a sequence of media containing different concentrations of glucose and fructose. Unexpectedly and for both species, this simulation did not improve somatic embryo production, which stayed similar to the one obtained on constant osmotic pressure. To understand these results, embryos produced on the different treatments were analyzed in terms of sucrose, glucose, fructose and starch levels and protein contents. The embryo carbohydrate content was independent from the carbohydrate used in the maturation medium. However, embryos matured on 6% sucrose allowed to hydrolyze during the maturation period contained significantly more soluble and insoluble proteins than embryos matured on any other treatment. Furthermore, embryos with a higher protein content also exhibited a higher epicotyl appearance frequency. The role of sucrose as a regulatory factor during the maturation of spruce somatic embryos is discussed.  相似文献   

5.
We report, an efficient protocol for plantlet regeneration from the cell suspension cultures of cowpea through somatic embryogenesis. Primary leaf-derived, embryogenic calli initiated in MMS [MS salts (Murashige and Skoog 1962) with B5 (Gamborg et al. 1968) vitamins] medium containing 2,4-Dichlorophenoxyacetic acid (2,4-D), casein hydrolysate (CH), and l-Glutamic acid-5-amide (Gln). Fast-growing embryogenic cell suspensions were established in 0.5 mg l–1 2,4-D, which resulted in the highest recovery of early stages of somatic embryos in liquid MMS medium. Embryo development was asynchronous and strongly influenced by the 2,4-D concentration. Mature monocotyledonary-stage somatic embryos were induced in liquid B5 medium containing 0.1 mg l–1 2,4-D, 20 mg l–1 l-Proline (Pro), 5 M Abscisic acid (ABA), and 2% mannitol. B5 medium was found superior for the maturation of somatic embryos compared to MS and MMS media. The importance of duration (5 d) for effective maturation of somatic embryos is demonstrated. A reduction in the 2,4-D level in suspensions increased the somatic embryo induction and maturation with decreased abnormalities. Sucrose was found to be the best carbon source for callus induction while mannitol for embryo maturation and maltose for embryo germination. Extension of hypocotyls and complete development of plantlet was achieved in half-strength B5 medium supplemented with 3% maltose, 2500 mg l–1 potassium nitrate, and 0.05 mg l–1 thidiazuron (TDZ) with 32% regeneration frequency. Field-established plants were morphologically normal and fertile. This regeneration protocol assures a high frequency of embryo induction, maturation, and plantlet conversion.  相似文献   

6.
Summary Embryogenic callus developed in 55% of the mature embryo explants of Norway spruce (Picea abies L.) growing on a LP medium minus the amino acids and sugars (except sucrose). This is the highest reported yield of embryogenic callus from mature embryos of P. abies that has ever been reported. Callus induction from either the middle or the end of the hypocotyl of the embryos began after 2–3 weeks. Three types of calli were recovered: (a) globular, (b) light green-compact, (c) white mucilaginous. Only the white mucilaginous calli were embryogenic. The globular and light green-compact calli never become embryogenic, even after several subcultures. The development of somatic embryos was accomplished on half-strength macro-elements of NSIII medium containing 1 M -naphthaleneacetic acid, 1 M abscisic acid, and 3% sucrose. The addition of 10–7 M buthionine sulfoximine to the medium increased the development of somatic embryos by three fold. These results suggest that there is a great potential for increasing the frequency and development of somatic embryos in P. abies. Careful selection of the genotype and modification of the culture medium is required.  相似文献   

7.
The involvement of apoplastic invertase (Ap Inv) and sucrose synthase (SuSy) in the somatic embryo development of black spruce (Picea mariana) was investigated under different maturation conditions. Replacing 6% sucrose with 3% or 1% sucrose in the maturation medium drastically decreased Ap Inv activity and amount in embryogenic tissues. This was accompanied by a decrease in the hexose pool that resulted in a lower starch deposition and protein amount in embryogenic tissues together with a lower embryo production. Conversely, SuSy activity was stable during maturation regardless of the sucrose concentration used in the medium. The presence of an extracellular enzyme responsible for sucrose hydrolysis in the maturation medium was also verified. An immunodetection experiment with anti-acid invertase antibodies revealed the presence of an active 53 kDa polypeptide in the medium, which had a similar molecular mass to that of the Ap Inv polypeptide found in embryogenic tissues. Utilization of sucrose from the medium by the tissues was also studied using labelled 14C-sucrose. Distribution of the radioactivity between tissular sucrose, glucose, and fructose showed that sucrose was diffused into the cell wall of embryogenic tissues and partly hydrolyzed by Ap Inv. These results show that the utilization of sucrose from the medium, the Ap Inv activity in embryogenic tissues, and the release of an active invertase into the medium operate together for the utilization of the carbohydrates during somatic embryo development in black spruce.  相似文献   

8.
Summary We investigated abscisic acid (ABA) metabolism among Norway and white spruce somatic embryo cultures which exhibited differences in maturation response when placed on racemic abscisic acid [(±)-ABA]. Differences in metabolic rate among the spruce genotypes could affect the ABA pool available for the maturation process, and might therefore be responsible for the differences in maturation response. The production of cotyledonary (stage 3) somatic embryos in cultures (genotypes) of Norway spruce (PA86:26A and PA88:25B) and of white spruce (WS1F cryoD and WS46) was compared. In each species pair one of the two genotypes failed to show stage 3 embryo development (respectively, PA88:25B and WS46). The investigation of ABA metabolism of each species pair showed that no substantial differences in ABA consumption or in the production of metabolites occurred. In each case ABA was metabolized to phaseic acid and dihydrophaseic acid over the 42-day culture period, metabolites were recoverable from the agar-solidified medium, and the sum of residual ABA and metabolites were equivalent to the ABA initially supplied. The results indicate that the process of ABA metabolism occurs essentially independently of somatic embryo maturation. NRCC no. 37345.  相似文献   

9.
Summary Zygotic embryos from open-pollinated seeds of 20 black spruce (Picea mariana) families were used to investigate the proportion of genotypes that would give rise to embryogenic tissue (ET) and mature somatic embryos. Eighty-five percent of the maternal genotypes gave rise to embryogenic tissue. Within-family rates of ET induction ranged from 0 to 17%, with an average of 8%. The largest proportion of variation was among families, indicating the additive nature of the genetic variation. On a medium with 6% sucrose and 3.7 M ABA, 90% of the embryogenic lines gave rise to abundant (>100/100 mg of ET), well-formed, mature somatic embryos. A medium with 2% sucrose, without 2,4-D, was used to germinate the mature somatic embryos. These were grown in the greenhouse and have now been established in field trials.  相似文献   

10.
Growth regulators and carbohydrates are key regulatory factors that affect somatic embryogenesis. Carbohydrates serve as energy and carbon sources, osmotica and osmoprotectants and are important signal molecules. Most information about the role of carbohydrates in somatic embryogenesis in Norway spruce has been obtained with embryos grown on semi-solid media. The aim of the present study was to gain a better understanding of the effects of exogenous carbohydrates through modification of medium components (sugars) and physical state (liquid and semi-solid media). Rafts, floating on liquid medium, were used to allow precise manipulation of carbohydrate availability, though it did not result in the highest embryo yields. Our results indicate the following for Norway spruce somatic embryo development: (1) overall carbohydrate dynamics in somatic embryos cultivated on liquid or semi-solid media were similar; (2) the total carbohydrate content, however, was higher in somatic embryos cultivated on liquid media; (3) sucrose was present in somatic embryos even when they matured on sucrose-free media; (4) sucrose content in liquid sucrose-supplemented maturation media decreased sharply during a 1-wk subculture interval; (5) the accumulation of the raffinose family oligosaccharides during desiccation was determined independently of previous sugar supply; and (6) a decrease of sucrose and an increase of hexoses contents accompanied somatic embryo germination.  相似文献   

11.
Carbohydrate metabolism was investigated during spruce somatic embryogenesis. During the period of maintenance corresponding to the active phase of embryogenic tissue growth, activities of soluble acid invertase and alkaline invertase increased together with cellular glucose and fructose levels. During the same time, sucrose phosphate synthase (SPS) activity increased while sucrose synthase (SuSy) activity stayed constant together with the cellular sucrose level. Therefore, during maintenance, invertases were thought to generate the hexoses necessary for embryogenic tissue growth while SuSy and SPS would allow cellular sucrose to be kept at a constant level. During maturation on sucrose-containing medium, SuSy and SPS activities stayed constant whereas invertase activities were high during the early stage of maturation before declining markedly from the second to the fifth week. This decrease of invertase activities resulted in a decreased hexose:sucrose ratio accompanied by starch and protein deposition. Additionally, carbohydrate metabolism was strongly modified when sucrose in the maturation medium was replaced by equimolar concentrations of glucose and fructose. Essentially, during the first 2 weeks, invertase activities were low in tissues growing on hexose-containing medium while cellular glucose and fructose levels increased. During the same period, SuSy activity increased while the SPS activity stayed constant together with the cellular sucrose level. This metabolism reorganization on hexose-containing medium affected cellular protein and starch levels resulting in a decrease of embryo number and quality. These results provide new knowledge on carbohydrate metabolism during spruce somatic embryogenesis and suggest a regulatory role of exogenous sucrose in embryo development.  相似文献   

12.
Experiments were performed to determine the influence of maturation medium carbohydrate content on the rates of germination and plantlet conversion (root and shoot growth) of somatic embryos from four embryogenic lines derived from leaf or internode explants of Quercus robur L. seedlings. The conversion rate was favoured by high carbohydrate content as long as the maturation medium contained at least 2% sucrose, which was necessary for healthy embryo development. Given this, sorbitol and mannitol favoured the conversion rate more efficiently than sucrose, the highest rate, 32%, being achieved by medium with 6% sorbitol and 3% sucrose. Maturation treatment did not affect the root or shoot lengths of converted embryos. In supplementary experiments, 2 weeks of gibberellic acid treatment between maturation and germination treatments did not improve germination rates, but did reduce root length and the number of leaves per regenerated plantlet. In the four embryogenic lines tested, plant recovery rate was enhanced by inclusion of benzyladenine into the germination medium following culture of the embryos on maturation medium with 6% sorbitol and 2-3% sucrose. In embryogenic systems it is important to assess the uniformity of the regenerants. Random amplified polymorphic DNA (RAPD) analysis using 32 arbitrary oligonucleotide primers was performed to study variability in DNA sequences within and between four embryogenic lines. No intraclonal nor interclonal polymorphism was detected between embryogenic lines originating from different types of explant from the same seedling, but every one of the primers detected enough polymorphism among clones originating from different plants to allow these three origins to be distinguished. No differences in DNA sequences between regenerated plantlets and their somatic embryos of origin were detected, but a nodular callus line that had lost its embryogenic capacity was found to be mutant with respect to three other clones originating from the same plantlet. This study shows that high carbohydrate levels in the maturation medium significantly increase plant conversion of oak somatic embryos, which exhibit no variation in DNA sequences when proliferated by secondary embryogenesis.  相似文献   

13.
Growth and l-lactic acid production on 24 different carbohydrates and polyols (glycerol, mannitol and sorbitol) by Rhizopus arrhizus CCM 8109 were determined. The d- but not the l-forms of xylose, fructose, galactose, mannose, glucose, cellobiose, maltose and sucrose and partially hydrolysed starch were converted to l-lactic acid. Changes in lipid formation and fatty acid composition were detected in biomass grown on the different sugars. In the presence of polyols, growth and considerable production of lipids were observed with little or no lactate production. Invertase was mainly associated with the mycelium during growth on sucrose, whereas glucoamylase and -amylase were produced extracellularly during growth on starch.The authors are with the Department of Biochemical Technology, Faculty of Chemical Technology, Slovak Polytechnical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic  相似文献   

14.
Summary The carbohydrate status of developing seeds of Picea abies was examined in order to provide a frame of reference for the evaluation of changes in carbohydrate content in maturing somatic embryos of the same species. Samples were taken at weekly intervals from 12 May 1998 (estimated time of pollination) until 20 October 1998. The total non-structural carbohydrate content was high (≈150–180 μg mg−1 dry weight) at the time of the first samples and the carbohydrate spectrum consisted of sucrose, glucose, fructose, and pinitol. A dramatic decrease in carbohydrate content took place from June 6 onwards, that was accompanied by changes in carbohydrate partitioning to favor sucrose over hexoses and the disappearance of pinitol. Raffinose and stachyose were first detected on July 28, and their content gradually increased thereafter. Isolated embryos and remaining megagametophytes were analyzed starting with September 1. Carbohydrate content was higher in isolated zygotic embryo than in the rest of the seed, with a slowly increasing fraction of raffinose and stachyose. Comparisons of presented data with the results of our previous study of somatic embryo carbohydrate status (Lipavská et al., 2000) revealed the following common features: (1) a decrease in total carbohydrate content and (2) an increase in sucrose:hexose ratios in developing seeds and embryonal suspensor mass. Marked differences were observed in carbohydrate spectra: (1) somatic embryo development was not accompanied by pinitol accumulation in any phase; (2) mature zygotic embryos, in contrast to mature somatic embryos, contained raffinose and stachyose. These observations will provide a solid basis for improvement of protocols for somatic embryogenesis in Picea.  相似文献   

15.
Three cell lines of Taxus brevifolia Nutt. with differing growth rates were used to assess the effects of basal salt mixtures, carbohydrates, organic nitrogen additives, vitamin formulations, and plant growth regulators on callus growth. Gamborg's B5 major salts provided significantly better growth than all other salt formulations tested. The greatest biomass was obtained with 1% total carbohydrate. The best carbohydrate combination, 0.5% fructose + 0.5% sucrose, was significantly better than all other combinations of carbohydrates tested. A complex vitamin mixture was significantly better than any one previously published vitamin formulation. Greatest rates of callus growth were obtained with 4.14 M (1 mg l-1 picloram, 0.46 M (0.1 mg l-1 kinetin, and 0.38 M (0.1 mg l-1) abscisic acid or 0.29 M (0.1 mg l-1 gibberellic acid. Our final medium, TM5, is superior to published methods for the general callus culture of T. brevifolia. This medium has improved growth in three tested cell lines to provide doubling times of 3.5 to 5.6 days, an average 5.3-fold increase over our previously published medium.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid, 2ip-6-(,-dimethylamino)-purine - ABA abscisic acid - BA 6-benzyladenine - GA3 gibberellic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid - kinetin 6-furfurylaminopurine - NAA napthaleneacetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid  相似文献   

16.
Maturation of five embryogenic lines of Pinus strobus L. was tested on media with various sugars and sources of organic nitrogen, and solidified with two gellan gum concentrations (0.6 and 1.0%). Mature somatic embryo production was more abundant at 1.0% gellan gum than at 0.6%. Complex combinations of amino acids had little effect on mature embryo production of most tested embryogenic lines. Increasing glutamine concentration of the maturation medium from 1.7 to 7.3 g l−1 was beneficial to one embryogenic line. Increasing sucrose concentration or substituting part of the sucrose with mannitol or sorbitol had variable effects on somatic embryo maturation depending on the embryogenic line. A medium with 88 mM sucrose plus 175 mM sorbitol solidified with 1.0% gellan gum produced high numbers of somatic embryos in four out of five embryogenic lines tested. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Shoot clump cultures of Narcissus cultivars St. Keverne and Hawera were used to investigate the effects of culture medium carbon supply, type of carbohydrate and osmolarity on in vitro bulblet development. Increasing the medium osmolarity using mannitol or sorbitol, which did not act as substrates for growth, failed to stimulate bulblet formation with either cultivar. An exception to this was a relatively small increase in total bulblet dry weight per culture, in the cultivar Hawera only, caused by adding 30 g l –1 sorbitol in combination with 30 g l–1 sucrose. Simultaneously increasing the medium osmolarity and carbon supply using the metabolisable carbohydrate sources, sucrose, glucose, fructose or an equimolar mixture of glucose and fructose stimulated bulblet production, total dry matter accumulation and partitioning into bulblets. At comparable levels of carbon supply up to 19.0 g l–1, bulblet development of both cultivars was similar with monosaccharide and sucrose media. This indicates that substrate supply is more important for bulblet development than osmolarity of the culture medium. The cultivar Hawera also showed similar responses to monosaccharide and sucrose media supplying 37.9 g C l–1, despite the high osmolarity of monosaccharide media (c. 650 m Osm kg–1, equivalent to –1.6 MPa, compared to 380 m Osm kg–1 for sucrose medium). However in St. Keverne total dry matter accumulation and dry weight per bulblet were further stimulated only by increasing the sucrose supply from 19.0 to 37.9 g C l–1, not by increasing the monosaccharide supply. Implications of the findings for Narcissus micropropagation are discussed.  相似文献   

18.
吴丽芳  魏晓梅 《广西植物》2019,39(8):1107-1114
该研究以蔗糖、麦芽糖、山梨醇及PEG(6000)为渗透剂,探讨了不同渗透剂对白刺花体细胞胚发育、胚成熟及萌发的影响。结果表明:白刺花下胚轴形成的胚性愈伤组织接种至MS+2,4-D 0.2 mg·L~(-1)+NAA 1.0 mg·L~(-1)+6-BA 2.0 mg·L~(-1)+TDZ 1.0 mg·L~(-1)+蔗糖40 g·L~(-1)+谷氨酰胺100 mg·L~(-1)+植物凝胶3g·L~(-1)的培养基上,体细胞胚发生率高达66. 21%,总胚数为79个; 7%蔗糖可使体细胞胚成熟率高达64.36%,同时也可提高多子叶畸形胚形成; 2%麦芽糖+2%山梨醇+4%蔗糖组合使体细胞胚成熟率最高达88.89%,畸形胚比例最低; 30 g·L~(-1)PEG培养时,体细胞成熟率最高,为82.35%;鱼雷期的体细胞胚最合适转接,可使体胚萌发率达90.58%,复合糖上培养得到的成熟体细胞胚生根率最高,为87.47%。这为实现白刺花体细胞胚育苗奠定了理论基础,并提供了可行的方案。  相似文献   

19.
In lyophilized needles of Norway spruce ( Picea abies [L.] Karsten) and starting from bud break, we determined enzyme activities (sucrose phosphate synthase [SPS; EC 2.4,1.14]. sucrose synthase [SS; EC 2.4,1.13]. acid invertase [AI; EC 3.2,1.26]) and intermediates (starch, sucrose, glucose, fructose; fructose 6-phosphate, fructose 2.6-bisphosphate [F26BP]) of carbohydrate metabolism together with needle weight, shoot length, chlorophyll and protein. For up to 110 days after bud break, samples were taken twice a week from about 25-year-old trees under field conditions. At least three periods can be distinguished during needle maturation. During the first period (up to 45 days after bud break) Al showed the highest extractable activity. This coincided with very high levels of F26BP (up to 11 pmol [mg dry weight]−1) and a transient increase of starch in parallel to a decrease of sucrose. The interval between 45 and 70 days after bud break was characterized by high SS activity (ratio of fructose/glucose >1), much decreased levels of F26BP (down to below 1 pmol [mg dry weight]−1), and a pronounced increase in the dry weight/fresh weight ratio. In parallel, starch declined and soluble carbohydrates increased. Finally, needle maturation was characterized by decreasing SS and continuously increasing SPS activities, so that the ratio of SPS/SS increased more than 6-fold. AI. however, did not decline with maturation. Changes in pool sizes of metabolites and enzyme activities (AI. SPS) are consistent with current concepts on sink/source transition. SS is obviously important with regard to the synthesis of structural polysaccharides.  相似文献   

20.
Factors affecting conversion of horse chestnut (A. hippocastanum L.) somatic embryos into plantlets were evaluated. Anther filament derived embryogenic tissue developed bipolar structures with two cotyledons and a well-developed shoot and root apical meristem upon auxin omittance from the culturing medium. The impact of carbohydrate type (glucose, fructose, sucrose and maltose) and concentration (3 and 6%) on somatic embryo maturation and conversion were evaluated. Although conversion frequencies were high for all treatments, overall quality of regenerated plantlets was poor. Increasing the carbohydrate concentration in the maturation medium did not increase conversion of somatic embryos or quality of regenerated plantlets in terms of shoot height. On the contrary, addition of PEG (polyethylene glycol) in maturation media had a beneficial effect on shoot quality of regenerated plantlets. Sucrose was a superior carbon source when PEG was included in the maturation medium, in terms of conversion rate (65.7%) as well as of shoot quality of plantlets (43.8% of plantlets had shoots >2 cm). Clonal fidelity of the different development stages of somatic embryogenesis and of converted plantlets was assessed by flow cytometry and no major ploidy changes were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号