首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Physiology of halophytes   总被引:12,自引:0,他引:12  
Summary The cellular basis of salt tolerance in halophytes depends upon the compartmentation of ions necessary for osmoregulation in vacuoles and upon osmotic adjustment of the cytoplasm by compatible solutes. The central role played by Na+ and Cl in osmotic adjustment suggests that the transport of these ions and its regulation must be of primary importance in the physiology of the plant as a whole. There have been few investigations into the regulation of leaf ion concentrations, but such data as are in the literature suggest that limiting xylem Na+ (and Cl) concentrations, together with continued leaf expansion, are particularly important. The role of phloem in retranslocation is uncertain due to lack of data. Decreases in transpiration rate per unit area of leaf help to lower the ion input into leaves. Any linked reductions in photosynthesis appear to be due to decreases in stomatal frequency.  相似文献   

2.
3.
Abstract

Reverse osmosis is a widely known technology used to produce fresh water from brackish waters. However, the reject brine from desalination plants poses a serious threat to the environment due to soil and groundwater salinization. The aim of this study was to investigate the potential of Atriplex nummularia to extract salts from a soil irrigated with reverse osmosis brine, at varying moisture levels. A field experiment was conducted in a split-plot design, with randomized complete blocks replicated four times. Treatments consisted of irrigation with reject brine in the main plots, with four relative percentages of the soil moisture at field capacity (100, 85, 70, and 50%), and two levels of organic fertilization in the subplots (0 and 1.5?L plant?1 of goat manure). The mineral composition of leaves and stems indicated that the highest salt extraction by plants occurred when soil moisture was maintained at 100% field capacity. The salt extraction capacity of A. nummularia indicates a high potential for phytoremediation of soils affected by brine disposal from reverse osmosis plants.  相似文献   

4.
    
Phytophthora ramorum has been found in waterways outside infested nurseries, but little is known about its behavior in water. This study examined the effect of salinity on survival, growth, sporulation, and infection. P. ramorum survival and growth was negatively correlated with salt concentration (range of 0–45 g l−1), but showed a level of tolerance even at 45 g l−1. No sporangia were observed in cultures with higher than 20 g l−1 of salt and zoospores were not released from sporangia above 14 g l−1. Water sources with different salinity were used to understand the environment where P. ramorum can survive and infect host material. Water from natural bodies and water amended with different salt concentrations were added to P. ramorum-infested sand and baited with rhododendron leaf disks. Infection decreased with increasing salt concentration and increased with higher initial concentration of P. ramorum. This research helps to better understand the effects of water quality on survival and infectivity of P. ramorum, expanding the potential survey range.  相似文献   

5.
6.
    
The continuous use of brackish groundwater for irrigation is detrimental for soil and crop attributes. A three-year research study was designed for the wheat crop to assess the effects of brackish groundwater on crop yield and soil health under a surface irrigation system. Three sites were selected in different cropping zones of Pakistan. The treatments comprised of irrigation with moderately brackish water having 0.8, 1.3 & 2.7 dSm−1 of salinity and canal water. The results indicated that EC, SAR, bicarbonates, Ca2+ and Mg2+ levels increased in the soil for consecutive years and this increase was more at site S3 followed by S2 and S1. As soil depth is concerned, the increase was more pronounced in upper layers of soil (0–15 cm) as compared to 15–30 cm depth. Growth and yield were also affected by the consecutive use of this water, the number of plants, plant height, the number of spikes per plant, and yield was reduced at all the three sites. However, the impact was less pronounced at the site S1 whereas S3 was the most affected one. Grain weight and dry matter weight were observed to be maximum at S1. Water productivity was also calculated for all the three sites. Maximum water productivity was observed at S1 followed by S2 & S3. It was concluded that the continuous use of brackish water would have an adverse effect on crop yield and subsequently, soil health is also affected by it significantly.  相似文献   

7.
Morphological analysis of four populations of Suaeda maritima was undertaken in order to examine the variation between populations from inland and maritime saline area, as well as between the two subspecies. Variability and significance of morpho-anatomical differentiation were examined using principal component analysis (PCA), discriminant component analysis (DCA) and cluster analysis. Plants of each population exhibited halomorphic and xeromorphic characteristics. The results of PCA and DCA showed that S. maritima subsp. prostrata and S. maritima subsp. maritima could be clearly separated based on their quantitative anatomical characteristics. Based on our analysis, climate and the amount of salt and ions in the soil, are important factors that enhance the adaptive potential of S. maritima.  相似文献   

8.
Summary Growth reduction or cessation is an initial response of Atriplex nummularia L. cells to NaCl. However, A. nummularia L. cells that are adapted to 342 and 428 mM NaCl are capable of sustained growth in the presence of salt. Cells that are adapted to NaCl exhibit a reduced rate of division compared to unadapted cells. Unlike salt adapted cells of the glycophyte Nicotiana tabacum L., A. nummularia L. cells do not exhibit reduced rate of cell expansion after adaptation. However, the cell expansion rate of unadapted A. nummularia L. cells is considerably slower than that of unadapted glycophyte cells and this normally low rate of cell expansion may contribute to the enhanced capacity of the halophyte to tolerate salt. Turgor of NaCl adapted cells was equivalent to unadapted cells indicating that the cells of the halophyte do not respond to salt by osmotic over adjustment as reported for the glycophyte tobacco (Binzel et al. 1985, Plant Physiol. 79:118–125).  相似文献   

9.
The halophytes Plantago maritima, Aster tripolium, Artemisia santonicum, Puccinellia limosa, Festuca pseudovina and Lepidium crassifolium from two different saline soils of the Hungarian steppe were examined for colonization by arbuscular mycorrhizal fungi (AMF). The salt aster (A. tripolium) and the sea plantain (P. maritima) were examined more thoroughly by recording root colonization parameters, the salt content in the soil and monthly precipitations in 2001 and 2002. Mycorrhizal colonization was maximal in late spring to early summer and had a second peak later in the autumn. Arbuscule formation and overall mycorrhizal colonization appeared to be inversely correlated with the intensity of rainfall at the investigated sites. The results suggest that, in addition to seasonality, drought may play an important role in governing mycorrhizal activity in saline habitats. In greenhouse experiments, conditions in which AMF could overcome the inhibitory effects of sodium chloride on establishing plant–mycorrhizal symbiosis were not met.  相似文献   

10.
Halophytic crops for cultivation at seawater salinity   总被引:16,自引:0,他引:16  
Summary Several hundred halophytes from salt marshes and salt deserts of the world have been evaluated in our laboratory at various degrees of intensity, and a few have been selected for development as crops. The development of the cultivars and the basic biology of the plants is being studied in Delaware in the United States. Agronomic testing, feeding trials, and development of the best agronomic practices are taking place in the saline desert at the American University in Cairo research station in Sadat City. Our present efforts focus primarily on three forages, one grain, and one vegetable.Sporobolus virginicus cultivars for both hay and pasture are being tested. ADistichlis spicata cultivar for hay has been identified, andSpartina patens is being evaluated as a hay as well. Although we do not yet have the data for a full year's growth in Egypt, forage yields of these various cultivars, when harvested as hay crops, range to 6.9 or more tons per acre, depending on the salinity and other environmental conditions, and the crude protein content as indicated by the nitrogen content ranges from 6 to 10%. Cultivars having the most useful agronomic qualities have been identified and are being increased in quantity. The grain cropKosteletzkya virginica is a perennial, producing a seed which resembles millet; its whole seeds contain approximately 25% protein and 15% oil. The yields of one of our better cultivars are about 1460 kg/ha (1300 lb/acre) when grown under 25 salinity. The vegetableAtriplex triangularis (similar to spinach) has been under mass selection for four years; a cultivar has been identified and seed is now being increased for this species.  相似文献   

11.
Pyruvate kinase enzymes were partially purified from leaves of halophytes, Atriplex gmelini C. A. Mey., Chenopodium acuminatum Wild, and Spergularia salina J. et C. Presl., grown hydroponically in the presence of 250 m M NaCl in a greenhouse, to determine their Km values for potassium. The values were all ca 10−3 M , as also reported for the glycophyte enzymes. However, the Km values were reduced by 60 to 70% by the addition of betaine to a concentration of 1 M .  相似文献   

12.
Plant salt tolerance: adaptations in halophytes   总被引:1,自引:0,他引:1  
Background Most of the water on Earth is seawater, each kilogram of which contains about 35 g of salts, and yet most plants cannot grow in this solution; less than 0·2 % of species can develop and reproduce with repeated exposure to seawater. These ‘extremophiles’ are called halophytes.Scope Improved knowledge of halophytes is of importance to understanding our natural world and to enable the use of some of these fascinating plants in land re-vegetation, as forages for livestock, and to develop salt-tolerant crops. In this Preface to a Special Issue on halophytes and saline adaptations, the evolution of salt tolerance in halophytes, their life-history traits and progress in understanding the molecular, biochemical and physiological mechanisms contributing to salt tolerance are summarized. In particular, cellular processes that underpin the ability of halophytes to tolerate high tissue concentrations of Na+ and Cl, including regulation of membrane transport, their ability to synthesize compatible solutes and to deal with reactive oxygen species, are highlighted. Interacting stress factors in addition to salinity, such as heavy metals and flooding, are also topics gaining increased attention in the search to understand the biology of halophytes.Conclusions Halophytes will play increasingly important roles as models for understanding plant salt tolerance, as genetic resources contributing towards the goal of improvement of salt tolerance in some crops, for re-vegetation of saline lands, and as ‘niche crops’ in their own right for landscapes with saline soils.  相似文献   

13.
Species separation in charophytes is primarily based on vegetative morphology, but the taxonomic delineation at species level worldwide is inconsistent. Here we compare ecophysiological characteristics of selected Chara species with vegetative morphological traits and genetic data. Four populations of the Chara baltica-Chara intermedia species cluster from locations along a north-south gradient through Europe were investigated. Physiological differences indicate habitat-specific adaptations. The Baltic Sea population from Hiddensee was found to be separated from a freshwater river population close to Munich with respect to light and salinity acclimation capabilities. However, a population from a brackish Mediterranean pool near Montpellier and one from the continental brackish water lake “Salziger See” near Halle, Germany, show intermediate ecophysiological characteristics, suggesting a continuum. Genetic analyses using AFLP (amplified fragment length polymorphism) match the results of the physiological analyses. The individuals of the Mediterranean and the Salziger See neither cluster to the typical C. baltica from the Baltic Sea nor to the C. intermedia from the freshwater habitat, but instead take an intermediate position. These results are stable against the background of a larger AFLP dataset on charophytes. Morphological analysis revealed no distinct groups and we therefore conclude that the C. baltica-C. intermedia cluster forms a physiological, morphological and genetic continuum.  相似文献   

14.
The irrigation of vegetables with raw wastewater has been practised in El Azzouzia, the wastewater-spreading field of Marrakesh city (Morocco), for many years. This water was found to be contaminated with different serogroups of Salmonella. B and C were the most frequently isolated groups. These same serogroups were detected on vegetables irrigated with these wastewater effluents. The crops whose edible product develops on the ground surface, such as lettuce and parsley, were more contaminated than those which grow, above the soil surface, like tomatoes and pimento. Except on lettuce, Salmonella on crops did not persist beyond 3 days after irrigation.  相似文献   

15.
Fluctuations in the salinity and physicochemical characteristics of water quality were surveyed in brackish Lake Obuchi on the Shimokita Peninsula in Aomori, Japan. The mean salinity in the surface layer in all regions of Lake Obuchi was about 10 psu, whereas in the basin region at depths of greater than 3 m it was 20 psu. Furthermore, all the year round the halocline was formed at depths of 1–4 m. The maximum density gradient along a vertical axis in the center of the lake was observed at depths of 1–2 m in summer and 2–4 m in spring and fall. The depth of the maximum density gradient fluctuated with the seasons. In summer the water in the bottom layer was anoxic, and Fe, Mn, PO4 3−-P, and NH4 +-N supplied from the bottom sediment accumulated at high concentrations below the halocline. Thus, it was observed that the transfer of substances between the layers above and below the barrier formed by the halocline is suppressed. Although Lake Obuchi is small and shallow, the inflowing seawater easily resides, and a stable halocline readily forms because of the shape of its basin, which suddenly deepens on the Pacific Ocean side. Received: May 24, 1999 / Accepted: September 25, 1999  相似文献   

16.
Ecophysiological strategies of coastal halophytes from foredunes and salt marshes are discussed. A comparison is made of the factors that limit growth in salt marshes and sand dunes. In salt marshes, zonation and succession are primarily governed by variation in soil salinity, which strongly depends on inundation with seawater. Results are described of experiments which aim at separating salinity and inundation effects on growth, osmotic and mineral relations in a comparison of salt-marsh halophytes. The growth response of plants cannot simply be correlated (and causally explained) with the concentration of Na, Cl, and K in the tissues. Also, the compatible osmotic solutes proline and methylated quaternary ammonium compounds may accumulate both in species with a positive response to increased salinity and in species with a growth reduction under seawater inundation. More likely inadequate adaptation of the plants water potential with these components is partly the cause of retarded growth. Disfunctioning of the plant in this respect may be at three levels: (a) total water potential of the plant, (b) (loss) of turgor pressure potential; (c) regulation at the cellular level. The ecological importance of some factors in seawater other than sodium chloride is considered. In coastal sand dunes airborne rather than soil salinity limits plant growth, together with the effects of abrasion, sand accretion, drought and the poor nutrient status of the dune sand. Adaptations of sand-dune species to these factors may consist of: large seeds with storage tissue germinating in the dark and seedling growth enough to emerge through the accreted sand. Aerial parts must be resistant to mechanical damage (high wind speed and abrasion), possibly by a sclerophyllous and tough structure. Efficient nutrient uptake, translocation and retranslocation seem to help survive sand-dune species in a nutrient-poor rooting medium.  相似文献   

17.
The hydrazinium reduction technique has so far been inapplicable to the determination of nitrate in brackish water and seawater due to interference from magnesium ions. We developed a pretreatment method for brackish water and seawater samples for the determination of nitrate based on the hydrazinium reduction technique. Magnesium ions in water samples were converted to a precipitate of a complex with oxine (8-quinolinol) at pH 9.5, and then the precipitate was centrifuged at 3000 rpm for 20 min. The extra oxine in the resulting sample (the supernatant liquid), which inhibits the reduction of nitrate to nitrite, was removed using a Sep-Pak C18 cartridge. Thus we achieved the preparation of a magnesium-free water sample. Using the hydrazinium reduction technique with the proposed pretreatment method, nitrate in brackish water and seawater as well as fresh water was quantitatively determined with high accuracy. Received: July 21, 1999 / Accepted: September 26, 1999  相似文献   

18.
The antibacterial activity of aqueous and methanol extracts of leaves/shoots of five salt marsh halophytes and six mangroves was studied against methicillin resistant, clinical isolates of Staphylococcus aureus. There was a clear comparability between the salt marsh halophytes and mangroves in their antibacterial action. The mangrove plants possessed higher antibacterial potency than the salt marsh halophytes. The highest activity was recorded with the methanol extract of Excoecaria agallocha followed by the methanol extracts of Aegiceras corniculatum, Lumnitzera racemosa and Ceriops decandra. The minimum inhibitory concentration (MIC) values ranged from 0.125 to 4 mg/mL and 1 to 16 mg/mL for methanol and aqueous extracts, respectively. Further separation of active principle from the potent mangrove plant will be useful for the control of drug resistant strains of S. aureus.  相似文献   

19.
Reported in this study are the experimental design and results of an immunosensor for the detection of the explosive, 2,4,6-trinitrotoluene (TNT) in seawater using a reversed-displacement format. This reversed-displacement immunosensor methodology has successfully measured TNT in seawater by direct injection, eliminating the need for preconcentration or pretreatment of samples. A microcolumn containing an Affi-Gel resin derivatized with a 2,4,6-trinitrobenzene (TNB) moiety and a fluorophore-labeled anti-TNT antibody composed the immunoassay reactive chamber. Fluorophore-labeled anti-TNT antibody was incubated with the modified Affi-Gel resin until binding equilibrium was reached. Under a constant flow, samples containing TNT were introduced into the flow stream displacing the fluorophore-labeled TNT antibody. Limits of detection were 2.5ng/mL or part-per-billion (ppb) for TNT in saline buffer and 25ppb in seawater with an analysis time of 10 min. Two anti-TNT antibodies with differing binding affinities were compared in the reversed-displacement assay format, and a correlation between affinity and detection limits was observed. Furthermore, we have demonstrated that the reversed-displacement format can be used to screen seawater samples containing TNT, remains effective after dozens of cycles, and provides significant fluorescence response before regeneration is required.  相似文献   

20.
Survival of the fish pathogen Aeromonas salmonicida in seawater   总被引:2,自引:0,他引:2  
Survival of Aeromonas salmonicida in natural (non-sterile) seawater, as determined from colony counts on marine agar, was found to be influenced by the presence of potentially inhibitory organisms, i.e., Acinetobacter, Aeromonas hydrophila, Chromobacterium, Escherichia coli, Flavobacterium and Pseudomonas, and their metabolites. Yet, samples, thought to be devoid of culturable A. salmonicida, were found to contain cells, which were filterable through 0.22 and 0.45 microns Millipore Millex porosity filters, and were recoverable on a specialised medium for L-forms, i.e. L-F medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号