首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Kobayashi 《Human cell》2001,14(3):233-236
Bikunin (bik, also known as urinary trypsin inhibitor [UTI]), a Kunitz-type protease inhibitor, interacts with cells as a negative modulator of the invasive cells. Human ovarian cancer cell line, HRA, was treated with phorbol ester (PMA) in order to evaluate the effect on expression of urokinase-type plasminogen activator (uPA). Preincubation of the cells with bik reduced the ability of PMA to trigger the uPA expression at the gene level and at the protein level. We next asked whether the mechanism of inhibition of uPA expression by bik is due to interference with MAP kinase, since PMA could also activate a signaling pathway involving MEK/ERK/c-Jun-dependent uPA expression. When cells were preincubated with bik, we could detect suppression of phosphorylation of these proteins, demonstrating that bik markedly suppresses the cell motility possibly through negative regulation of MEK/ERK/c-Jun-dependent mechanisms, and that these changes in behavior are correlated with a coordinated down-regulation of uPA which is likely to contribute to the cell invasion processes. To clarify the role of bik on tumor metastasis, HRA cells were transfected with an expression vector harboring a cDNA encoding for human bik. Transfection of HRA with the bik cDNA resulted in five variants stably expressing functional bik and significantly reduced invasion, but not proliferation, adhesion, or migration relative to the parental cells. Animals with bik* transfectants induced reduced peritoneal dissemination and long term survival. These results suggest that transfection with the bik gene induces the suppression of tumor cell invasion and peritoneal dissemination, and can prolong survival. This pre-clinical animal model offers the possibility to explore gene therapy as a new treatment modality for ovarian cancer.  相似文献   

2.
Although Group IV cytosolic phospholipase A2 (cPLA2) in astrocytes has been implicated in a number of neurodegenerative diseases, mechanisms leading to its activation and release of arachidonic acid (AA) have not been clearly elucidated. In primary murine astrocytes, phorbol myristate acetate (PMA) and ATP stimulated phosphorylation of ERK1/2 and cPLA2 as well as evoked AA release. However, complete inhibition of phospho-ERK by U0126, an inhibitor of mitogen-activated protein kinase kinase (MEK), did not completely inhibit PMA-stimulated cPLA2 and AA release. Epidermal growth factor (EGF) also stimulated phosphorylation of ERK1/2 and cPLA2[largely through a protein kinase C (PKC)-independent pathway], but EGF did not evoke AA release. These results suggest that phosphorylation of cPLA2 due to phospho-ERK is not sufficient to evoke AA release. However, complete inhibition of ATP-induced cPLA2 phosphorylation and AA release was observed when astrocytes were treated with GF109203x, a general PKC inhibitor, together with U0126, indicating the important role for both PKC and ERK in mediating the ATP-induced AA response. There is evidence that PMA and ATP stimulated AA release through different PKC isoforms in astrocytes. In agreement with the sensitivity of PMA-induced responses to PKC down-regulation, prolonged treatment with PMA resulted in down-regulation of PKCalpha and epsilon in these cells. Furthermore, PMA but not ATP stimulated rapid translocation of PKCalpha from cytosol to membranes. Together, our results provided evidence for an important role of PKC in mediating cPLA2 phosphorylation and AA release in astrocytes through both ERK1/2-dependent and ERK1/2-independent pathways.  相似文献   

3.
This study was conducted on human Jurkat T cell lines to elucidate the role of EPA and DHA, n-3 PUFA, in the modulation of two mitogen-activated protein (MAP) kinases, that is, extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2). The n-3 PUFA alone failed to induce phosphorylation of ERK1/ERK2. We stimulated the MAP kinase pathway with anti-CD3 antibodies and phorbol 12-myristate 13-acetate (PMA), which act upstream of the MAP kinase (MAPK)/ERK kinase (MEK) as U0126, an MEK inhibitor, abolished the actions of these two agents on MAP kinase activation. EPA and DHA diminished the PMA- and anti-CD3-induced phosphorylation of ERK1/ERK2 in Jurkat T cells. In the present study, PMA acts mainly via protein kinase C (PKC) whereas anti-CD3 antibodies act via PKC-dependent and -independent mechanisms. Furthermore, DHA and EPA inhibited PMA-stimulated PKC enzyme activity. EPA and DHA also significantly curtailed PMA- and ionomycin-stimulated T cell blastogenesis. Together these results suggest that EPA and DHA modulate ERK1/ERK2 activation upstream of MEK via PKC-dependent and -independent pathways and that these actions may be implicated in n-3 PUFA-induced immunosuppression.  相似文献   

4.
Imidazolium trans-imidazoledimethyl sulfoxide-tetrachlororuthenate (NAMI-A) is a novel ruthenium-containing experimental antimetastatic agent. Compelling evidence ascribes a pivotal role to endothelial cells in the orchestration of tumor angiogenesis and metastatic growth, suggesting antiangiogenic therapy as an attractive approach for anticancer treatment. In this context, activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway has been found fundamental in transducing extracellular stimuli that modulate a number of cellular process including cell proliferation, migration and invasion. Here we show that exposure of the transformed endothelial cell line ECV304 to NAMI-A significantly inhibited DNA synthesis, as well as the expression of the proliferating cell nuclear antigene (PCNA). These responses were associated with a marked down-regulation of ERK phosphorylation in serum-cultured cells. In addition, NAMI-A markedly reduced serum stimulated- and completely suppressed phorbol 12-myristate 13-acetate (PMA)-triggered MAPK/ERK kinase activity. NAMI-A was also able to inhibit the phosphorylation of MEK, the upstream activator of ERK, and, similar to both the protein kinase C (PKC) inhibitor GF109203X and the MAPK/ERK (MEK) inhibitor PD98059, it completely counteracted PMA-induced ERK phosphorylation. Finally, NAMI-A and PD98059 down regulated c-myc gene expression to the same extent in serum-cultured cells and dose-dependently counteracted, and ultimately abolished, the increase in c-myc gene expression elicited by PMA in serum-free cells. These results suggest that inhibition of MEK/ERK signaling by NAMI-A may have an important role in modulating c-myc gene expression and ECV304 proliferation.  相似文献   

5.
Transformed PDV keratinocytes respond to TGF-beta(1) by stimulating cell motility and invasiveness concomitantly to enhancement of the urokinase-type plasminogen activator (uPA) expression/secretion. Depletion of extracellular signal-regulated kinase (ERK1, 2) proteins by treatment of PDV cells with antisense oligonucleotides reduced basal uPA production and abolished stimulation of uPA secreted levels and cell motility by TGF-beta(1). PD098059, an inhibitor of mitogen-activated protein kinase (MAPK) kinase (MEK), decreased TGF-beta(1)-induced uPA mRNA expression, secreted activity in a dose-dependent manner, and abrogated TGF-beta(1)-stimulated cell motility and invasiveness. PDV-derived dominant-negative RasN17 cell transfectants secreted similar amounts of uPA and exhibited similar invasive abilities as the parental cells or control clones, but were unable to respond to TGF-beta(1) for stimulation of uPA-secreted levels and invasiveness. These results suggest that a Ras/MAPK transduction pathway is involved in the invasive response of transformed keratinocytes to TGF-beta(1).  相似文献   

6.
Previously we showed that the human GM3 synthase gene was expressed during the induction of megakaryocytic differentiation in human leukemia K562 cells by phorbol 12-myristate 13-acetate (PMA). In this study we found that treatment of PMA-induced K562 cells with G?6976, a specific inhibitor of PKC, and U0126, an inhibitor of the extracellular signal-regulated kinase (ERK) reduced expression of GM3 synthase, whereas wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K) did not. Moreover, activation of ERK and cAMP response element binding protein (CREB) was prevented by pretreatment with G?6976 and U0126. PMA stimulated the promoter activity of the 5'-flanking region from -177 to -83 region of the GM3 synthase gene, and mutation or deletion of a CREB site located around -143 of the promoter reduced PMA-stimulated promoter activity, as did the inhibitors G?6976 and U0126. Our results demonstrate that induction of GM3 synthase during megakaryocytic differentiation in PMA-stimulated human leukemia K562 cells depends upon the PKC/ERK/CREB pathway.  相似文献   

7.
Lang W  Wang H  Ding L  Xiao L 《Cellular signalling》2004,16(4):457-467
Phorbol esters can induce activation of two mitogen-activated protein kinase (MAPK) pathways, the extracellular signal-regulated kinase (ERK) pathway and the c-Jun N-terminal kinase (JNK) pathway. Unlike ERK activation, JNK activation by phorbol esters is somehow cell-specific. However, the mechanism(s) that contribute to the cell-specific JNK activation remain elusive. In this study, we found that phorbol 12-myristate 13-acetate (PMA) induced JNK activation only in non-small cell lung cancer (NSCLC) cells, but not in small cell lung cancer (SCLC) cells, whereas ERK activation was detected in both cell types. In NSCLC cells, PMA induced JNK activation in a time- and dose-dependent manner. JNK activation was attenuated by protein kinase C (PKC) down-regulation through prolonged pre-treatment with PMA and significantly inhibited by PKC inhibitors G?6976 and GF109203X. Subcellular localization studies demonstrated that PMA induced translocation of PKC-alpha, -betaII, and -epsilon isoforms, but not PKC-delta, from the cytosol to the membrane. Analysis of various PKC isoforms revealed that PKC-epsilon was exclusively absent in the SCLC cell lines tested. Ectopic expression of PKC-epsilon in SCLC cells restored PMA activation of JNK signaling only in the presence of PKC-alpha, suggesting that PKC-alpha and PKC-epsilon act cooperatively in regulating JNK activation in response to PMA. Furthermore, using dominant negative mutants and pharmacological inhibitors, we define that a putative Rac1/Cdc42/PKC-alpha pathway is convergent with the PKC-epsilon/MEK1/2 pathway in terms of the activation of JNK by PMA.  相似文献   

8.
In this study, we demonstrate that protein kinase C (PKC) activators, including phorbol-12-myristate-13-acetate (PMA), 1,2-dioctanoyl-sn-glycerol (DOG), and platelet-derived growth factor α are potent inducers of angiopoietin-like protein 4 (ANGPTL4) expression in several normal lung cell types and carcinoma cell lines. In human airway smooth muscle (HASM) cells induction of ANGPTL4 expression is observed as early as 2 h after the addition of PMA. PMA also increases the level of ANGPTL4 protein released in the medium. PKC inhibitors Ro31-8820 and Gö6983 greatly inhibit the induction of ANGPTL4 mRNA by PMA suggesting that this up-regulation involves activation of PKC. Knockdown of several PKCs by corresponding siRNAs suggest a role for PKCα. PMA does not activate MAPK p38 and p38 inhibitors have little effect on the induction of ANGPTL4 indicating that p38 is not involved in the regulation of ANGPTL4 by PMA. In contrast, treatment of HASM by PMA induces phosphorylation and activation of Ra, MEK1/2, ERK1/2, JNK, Elk-1, and c-Jun. The Ras inhibitor manumycin A, the MEK1/2 inhibitor U0126, and the JNK inhibitor SP600125, greatly reduce the increase in ANGPTL4 expression by PMA. Knockdown of MEK1/2 and JNK1/2 expression by corresponding siRNAs inhibits the induction of ANGPTL4. Our observations suggest that the induction of ANGPTL4 by PMA in HASM involves the activation of PKC, ERK, and JNK pathways. This induction may play a role in tissue remodeling during lung injury and be implicated in several lung pathologies.  相似文献   

9.
Our laboratory showed that bikunin, a Kunitz-type protease inhibitor, suppresses 4beta-phorbol 12-myristate 13-acetate (PMA)- or tumor necrosis factor-alpha (TNFalpha)-induced urokinase-type plasminogen activator (uPA) expression in different cell types. In addition to its effects on protease inhibition, bikunin could be modulating other cellular events associated with the metastatic cascade. To test this hypothesis, we examined whether bikunin was able to suppress the expression of uPA receptor (uPAR) mRNA and protein in a human chondrosarcoma cell line, HCS-2/8, and two human ovarian cancer cell lines, HOC-I and HRA. The present study showed that (a) bikunin suppresses the expression of constitutive and PMA-induced uPAR mRNA and protein in a variety of cell types; (b) an extracellular signal-regulated kinase (ERK) activation system is necessary for the PMA-induced increase in uPAR expression, as PD098059 and U0126, which prevent the activation of MEK1, reduce the uPAR expression; (c) bikunin markedly suppresses PMA-induced phosphorylation of ERK1/2 at the concentration that prevents uPAR expression, but does not reduce total ERK1/2 antigen level; (d) bikunin has no ability to inhibit overexpression of uPAR in cells treated with sodium vanadate; and (e) we further studied the inhibition of uPAR expression by stable transfection of HRA cells with bikunin gene, demonstrating that bikunin secretion is necessary for inhibition of uPAR expression. We conclude that bikunin downregulates constitutive and PMA-stimulated uPAR mRNA and protein possibly through suppression of upstream targets of the ERK-dependent cascade, independent of whether cells were treated with exogenous bikunin or transfected with bikunin gene.  相似文献   

10.
SSeCKS/Gravin/AKAP12 (“SSeCKS”) encodes a cytoskeletal protein that regulates G1 → S progression by scaffolding cyclins, protein kinase C (PKC) and PKA. SSeCKS is down-regulated in many tumor types including prostate, and when re-expressed in MAT-LyLu (MLL) prostate cancer cells, SSeCKS selectively inhibits metastasis by suppressing neovascularization at distal sites, correlating with its ability to down-regulate proangiogenic genes including Vegfa. However, the forced re-expression of VEGF only rescues partial lung metastasis formation. Here, we show that SSeCKS potently inhibits chemotaxis and Matrigel invasion, motility parameters contributing to metastasis formation. SSeCKS suppressed serum-induced activation of the Raf/MEK/ERK pathway, resulting in down-regulation of matrix metalloproteinase-2 expression. In contrast, SSeCKS had no effect on serum-induced phosphorylation of the Src substrate, Shc, in agreement with our previous data that SSeCKS does not inhibit Src kinase activity in cells. Invasiveness and chemotaxis could be restored by the forced expression of constitutively active MEK1, MEK2, ERK1, or PKCα. SSeCKS suppressed phorbol ester-induced ERK1/2 activity only if it encoded its PKC binding domain (amino acids 553–900), suggesting that SSeCKS attenuates ERK activation through a direct scaffolding of conventional and/or novel PKC isozymes. Finally, control of MLL invasiveness by SSeCKS is influenced by the actin cytoskeleton: the ability of SSeCKS to inhibit podosome formation is unaffected by cytochalasin D or jasplakinolide, whereas its ability to inhibit MEK1/2 and ERK1/2 activation is nullified by jasplakinolide. Our findings suggest that SSeCKS suppresses metastatic motility by disengaging activated Src and then inhibiting the PKC-Raf/MEK/ERK pathways controlling matrix metalloproteinase-2 expression and podosome formation.  相似文献   

11.
Urinary trypsin inhibitor (UTI), a Kunitz-type protease inhibitor, efficiently inhibits tumor cell invasion and metastasis. We examined the effect of UTI on urokinase-type plasminogen activator (uPA) expression in ovarian cancer cell lines, HOC-I and HRA. By Northern blot, Western blot, ELISA, and zymographic analyses, we demonstrated that UTI inhibited the expression of uPA mRNA and protein in these cells in a time- and dose-dependent manner, independent of whether induction was triggered by phorbol ester. Monoclonal antibody 4G12, which inhibits UTI binding to the cells, produced a dose-dependent abrogation in UTI-mediated down-regulation of uPA expression. These data suggest that UTI significantly down-regulates tumor cell uPA mRNA expression and protein secretion, and that UTI binding to the cells is necessary to exert the UTI's action.  相似文献   

12.
Abstract: The relationship between extracellular signal-regulated protein kinase (ERK) activation and process extension in cultured bovine oligodendrocytes (OLGs) was investigated. Process extension was induced through the exposure of cultured OLGs to phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC), for various intervals. During the isolation of these OLGs from bovine brain, the original processes were lost. Therefore, any reinitiation of process extension via PMA stimulation was easily discernible through morphological monitoring. It was found that exposure of OLGs to PMA for 10 min was enough to induce OLG process extension 24–72 h later. Furthermore, this extension was still evident at least 1 week after the initial PMA stimulation, indicating that OLGs do not need continuous PKC activation to sustain process extension. Control and PMA-stimulated OLGs were also subjected to immunocytochemistry using an anti-ERK antibody selective for the mitogen-activated protein kinases p42 Erk2 (ERK2) and p44 Erk1 (ERK1) isoforms. ERK immunoreactivity in the nucleus was evident after PMA stimulation of OLGs but not in control OLGs. In parallel experiments, the control and PMA-stimulated OLGs were purified by Mono Q fractionation and subjected to ERK phosphotransferase assays using [γ-32P]ATP and either myelin basic protein (MBP) or a synthetic peptide substrate based on the Thr97 phosphorylation site in MBP. These assays indicated that in PMA-treated OLGs, ERK activation was at least 12-fold higher than in control OLGs. Anti-ERK and anti-phosphotyrosine western blots of the assay fractions verified an enhanced phosphorylation of ERK1 and ERK2 in PMA-treated fractions relative to control fractions. When OLGs were pretreated for 15 min with the ERK kinase (MEK) inhibitor PD 098059 before PMA stimulation, they exhibited a 67% decrease in ERK activation as compared with cells treated with PMA alone. Furthermore, these MEK inhibitor-pretreated cells were still viable but showed no process extensions up to 1 week later. Therefore, we propose that a threshold level of ERK activity is required for the initiation of OLG process extension.  相似文献   

13.
We have studied phospholipase D (PLD) activation in relation to protein kinase C (PKC) and the involvement of PLD in extracellularly regulated kinase 1 (MAPK) (ERK1) activation and c-fos mRNA expression in C3H/10T1/2 (Cl8) fibroblasts. In these cells, the PLD activity was significantly increased by porcine platelet-derived growth factor (PDGF-BB), phorbol 12-myristate 13-acetate (PMA), and epidermal growth factor (EGF). PLD activation by PDGF-BB and PMA, but not EGF, was inhibited in Cl8 cells expressing the HAbetaC2-1 peptide (Cl8 HAbetaC2-1 cells), with a sequence (betaC2-1) shown to bind receptor for activated C kinase 1 (RACK1) and inhibit c-PKC-mediated cell functions [Science 268 (1995) 247]. A role of alpha-PKC in PLD activation is further underscored by co-immunoprecipitation of alpha-PKC with PLD1 and PLD2 in non-stimulated as well as PMA- and PDGF-BB-stimulated Cl8 cells. However, only PKC in PLD1 precipitates was activated by these agonists, while the PKC in the PLD2 precipitates was constitutively activated. The c-fos mRNA levels in Cl8 cells increased more than 30-fold in response to either PDGF-BB, EGF, or PMA. Approximately 60% inhibition of this increase in c-fos mRNA levels was observed in Cl8 HAbetaC2-1 cells. Formation of phosphatidylbutanol (PtdBut) at the expense of phosphatidic acid (PtdH) in the presence of n-butanol inhibited ERK1 activation and c-fos mRNA expression in PDGF-BB-treated Cl8 cells. ERK activation by PMA was unaffected by n-butanol in Cl8 cells but almost abolished by n-butanol in Cl8 HAbetaC2-1 cells, showing that ERK activation by PMA is heavily dependent on PKC and PLD1. In contrast, ERK activation by EGF in both cell types was not sensitive to n-butanol. These results indicate (1) a role of a functional interaction between the RACK1 scaffolding protein and a alphaPKC-PLD complex for achieving full PLD activity in PDGF-BB- and PMA-stimulated Cl8 cells; (2) PLD-mediated PtdH formation is needed for optimal ERK1 activation by PDGF-BB and maximal increase in c-fos mRNA expression. These findings place PLD as an important component in PDGF-BB- and PMA-stimulated intracellular signalling leading to gene activation in Cl8 cells, while EGF does not require PLD.  相似文献   

14.
In vitromegakaryocytic differentiation of the pluripotent K562 human leukemia cell line is induced by PMA. Treatment of K562 cells with PMA results in growth arrest, polyploidy, morphological changes, and increased cell–cell and cell–substrate adhesion. These PMA-induced changes in K562 cells are preceded by a rapid rise in the activity of MEK (MAP kinase/extracellular regulated kinases) that leads to a sustained activation of ERK2 (extracellular regulated kinase; MAPK). Blockade of MEK1 activation by PD098059, a recently described specific MEK inhibitor [D. T. Dudleyet al.(1995).Proc. Natl. Acad. Sci. USA92, 7686–7689], reverses both the growth arrest and the morphological changes of K562 cells induced by PMA treatment. These changes are not associated with a disruption of PMA-induced down-regulation of BCR-ABL kinase or early integrin signaling events but are associated with a block of the cell-surface expression of the gpIIb/IIIa (CD41) integrin, a cell marker of megakaryocytic differentiation. These results demonstrate that the PMA-induced signaling cascade initiated by protein kinase C activation requires the activity of the MEK/ERK signaling complex to regulate cell cycle arrest, thus regulating the program that leads to the cell-surface expression of markers associated with megakaryocytic differentiation.  相似文献   

15.
16.
Two signaling pathways, the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK)-dependent pathway and the nuclear factor-kappaB (NF-kappaB)-dependent pathway, have been known to mediate megakaryocytic differentiation of K562 cells induced by phorbol 12-myristate 13-acetate (PMA). In this study, we examined whether 90-kDa ribosomal S6 kinase (RSK), known as a substrate of ERK/MAPK and a signal-inducible IkappaBalpha kinase, would link two pathways during the differentiation. RSK1 was activated in a time- and dose-dependent manner during the PMA-induced differentiation. Overexpression of wild-type or dominant inhibitory mutant (D205N) of RSK1 enhanced or suppressed PMA-stimulated NF-kappaB activation and megakaryocytic differentiation as shown by morphology, nonspecific esterase activity, and expression of the CD41 megakaryocytic marker, respectively. In addition, overexpression of the dominant inhibitory mutant (S32A/S36A) of IkappaBalpha inhibited PMA-stimulated and RSK1-enhanced megakaryocytic differentiation, indicating that NF-kappaB mediates a signal for megakaryocytic differentiation downstream of RSK1. PMA-stimulated activation of ERK/MAPK, RSK1, and NF-kappaB and the PMA-induced megakaryocytic differentiation were prevented by pretreatment with PD98059, a specific inhibitor of the mitogen-activated ERK kinase (MEK). Therefore, these results demonstrate that the sequential ERK/RSK1/NF-kappaB pathway mediates PMA-stimulated megakaryocytic differentiation of K562 cells.  相似文献   

17.
The phorbol ester, phorbol-12-myristate-13-acetate (PMA), an activator of PKCs, is known to stimulate the in vitro growth of monolayer cultures of normal human melanocytes whereas it inhibits the growth of most malignant melanoma cell lines. We examined the effect of PMA on proliferation and survival of melanoma cells grown as multicellular aggregates in suspension (spheroids), and aimed to elucidate downstream targets of PKC signaling. In contrast to monolayer cultures, PMA increased cell proliferation as well as protected melanoma cells from suspension-mediated apoptosis (anoikis). Supporting the importance of PKC in anchorage-independent growth, treatment of anoikis-resistant melanoma cell lines with antisense oligonucleotides against PKC-alpha, or the PKC inhibitor G?6976, strongly induced anoikis. PMA induced activation of ERK1/2, but this effect was not prevented by the MEK inhibitors PD98059 or by U0126. Whereas PD98059 treatment alone led to marked activation of the pro-apoptotic Bim and Bad proteins and significantly increased anoikis, these effects were clearly reversed by PMA. In conclusion, our results indicate that the protective effect of PMA on anchorage-independent survival of melanoma cells at least partly is mediated by MEK-independent activation of ERK1/2 and inactivation of downstream pro-apoptotic effector proteins.  相似文献   

18.
The histamine H(1) receptor (H1R) gene is up-regulated in patients with allergic rhinitis. However, the mechanism and reason underlying this up-regulation are still unknown. Recently, we reported that the H1R expression level is strongly correlated with the severity of allergic symptoms. Therefore, understanding the mechanism of this up-regulation will help to develop new anti-allergic drugs targeted for H1R gene expression. Here we studied the molecular mechanism of H1R up-regulation in HeLa cells that express H1R endogenously in response to histamine and phorbol 12-myristate 13-acetate (PMA). In HeLa cells, histamine stimulation caused up-regulation of H1R gene expression. Rottlerin, a PKCδ-selective inhibitor, inhibited up-regulation of H1R gene expression, but Go6976, an inhibitor of Ca(2+)-dependent PKCs, did not. Histamine or PMA stimulation resulted in PKCδ phosphorylation at Tyr(311) and Thr(505). Activation of PKCδ by H(2)O(2) resulted in H1R mRNA up-regulation. Overexpression of PKCδ enhanced up-regulation of H1R gene expression, and knockdown of the PKCδ gene suppressed this up-regulation. Histamine or PMA caused translocation PKCδ from the cytosol to the Golgi. U0126, an MEK inhibitor, and DPQ, a poly(ADP-ribose) polymerase-1 inhibitor, suppressed PMA-induced up-regulation of H1R gene expression. These results were confirmed by a luciferase assay using the H1R promoter. Phosphorylation of ERK and Raf-1 in response to PMA was also observed. However, real-time PCR analysis showed no inhibition of H1R mRNA up-regulation by a Raf-1 inhibitor. These results suggest the involvement of the PKCδ/ERK/poly(ADP-ribose) polymerase-1 signaling pathway in histamine- or PMA-induced up-regulation of H1R gene expression in HeLa cells.  相似文献   

19.
Vascular smooth muscle cell (VSMC) migration is an important process in the development of vascular occlusive disease. To investigate mitogen regulation of VSMC migration, a cell-layer-scrape assay was used to measure migration 20 h after stimulation of VSMC with platelet-derived growth factor-BB (PDGF-BB), insulin-like growth factor I (IGF-I), or phorbol 12-myristate 13-acetate (PMA). The contributions of cell proliferation were eliminated by treatment of VSMC withhydroxyurea, which suppressed DNA synthesis.PDGF-BB stimulated VSMC migration 2.5-fold, while PMA and IGF-I stimulated migration 1.7- and 1.5-fold, respectively. The importance of protein kinase C (PKC), ERK, and phosphoinositide-3′ kinase (PI3 kinase) in mitogen-stimulated migration was investigated, using specific inhibitors of these signaling molecules. PDGF-BB-stimulated migration was inhibited by the general PKC inhibitor RO 31-8220 (40%), the MEK inhibitor PD98059 (31%), and the PI3 kinase inhibitor wortmannin (22%) but not by PMA-induced downregulation of conventional and novel PKC isoforms. IGF-I-stimulated migration was inhibited by RO 31-8220 (34%) and wortmannin (37%) but was much less affected by PD98059 (19%) or PKC downregulation (10%). PMA-stimulated migration was inhibited by RO 31-8220 (53%), PD98059 (50%), wortmannin (45%), and PKC downregulation (47%). Western analysis confirmed that ERK was strongly activated by PDGF-BB and PMA but not by IGF-I. To examine potentialin vivonegative regulators of VSMC migration, we analyzed the ability of heparin, an analogue of heparan sulfate, and TGFβ to attenuate mitogen-stimulated migration. Heparin but not TGFβ inhibited VSMC migration stimulated by all three mitogens. Delayed-addition experiments showed that RO 31-8220 retained substantial inhibitory activity even if added 3 h after PMA or IGF-I stimulation and 5 h after PDGF-BB addition, suggesting that sustained PKC activation is important for migration. The MEK inhibitor retained some effectiveness for 5 h after PDGF-BB stimulation but only 1 h after PMA addition. Western analysis showed ERK activation was transient after PMA treatment but sustained for 6 h after PDGF-BB treatment. Heparin strongly inhibited migration even if added 5–7 h after mitogen stimulation, suggesting that heparin may inhibit both short- and long-term signals necessary for migration. The present studies indicate that PMA and IGF-I activate a limited number of second messengers resulting in moderate stimulation of migration; in contrast PDGF-BB stimulates multiple signaling pathways resulting in strong stimulation of migration and lessened sensitivity to inhibitory signals.  相似文献   

20.
The mechanism of agonist-induced activation of Pyk2 and its relationship with ERK1/2 phosphorylation was analyzed in HEK293 cells stably expressing the gonadotropin releasing hormone (GnRH) receptor. GnRH stimulation caused rapid and sustained phosphorylation of ERK1/2 and Pyk2 that was accompanied by their nuclear translocation. Pyk2 was also localized on cell membranes and at focal adhesions. Dominant negative Pyk2 (PKM) had no effect on GnRH-induced ERK1/2 phosphorylation and c-fos expression. These actions of GnRH on ERK1/2 and Pyk2 were mimicked by activation of protein kinase C (PKC) and were abolished by its inhibition. GnRH caused translocation of PKC and δ, but not of , ι and λ, to the cell membrane, as well as phosphorylation of Raf at Ser338, a major site in the activation of MEK/ERK1/2. Stimulation of HEK293 cells by EGF caused marked ERK1/2 phosphorylation that was attenuated by the selective EGFR receptor (EGF-R) kinase inhibitor, AG1478. However, GnRH-induced ERK1/2 activation was independent of EGF-R activation. These results indicate that activation of PKC is responsible for GnRH-induced phosphorylation of both ERK1/2 and Pyk2, and that Pyk2 activation does not contribute to GnRH signaling. Moreover, GnRH-induced phosphorylation of ERK1/2 and expression of c-fos in HEK293 cells is independent of Src and EGF-R transactivation, and is mediated through the PKC/Raf/MEK cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号