首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histoplasma capsulatum is a successful intracellular pathogen of mammalian macrophages. As such, this fungus must survive and/or subvert hostile environmental onslaughts in a professionally antimicrobial host cell. H. capsulatum uses different host receptors for binding to macrophages (beta 2 integrins) than it uses for binding to dendritic cells (the fibronectin receptor); the fungus experiences different degrees of success in survival in these two cells. Surface expression of HSP60 as the specific adhesin for macrophage beta 2 integrins represents a novel mechanism for binding. Long considered a resident of the phagolysosome, H. capsulatum may also reside in a modified phagosome without experiencing phagolysosomal fusion. H. capsulatum must compete with the host to acquire the essential nutrient iron, and has several potential mechanisms for accomplishing this necessary feat. Finally, H. capsulatum displays morphotype-specific expression of several genes, and a calcium-binding protein expressed only by the pathogenic yeast phase has been demonstrated as essential for full virulence. An organism's environment is of great importance to its success or failure, and H. capsulatum is good at finding or making the right environment in the host.  相似文献   

2.
Histoplasma capsulatum is an important fungal pathogen in immunocompromised hosts, including AIDS patients. Experimental evidence suggests interferon-gamma (IFN) plays a role in host defense against H. capsulatum. In these studies we sought to demonstrate the importance of IFN in innate resistance to systemic histoplasmosis. The possible exacerbation of infection in BALB/c mice was assessed by administering 200 microg of hamster anti-IFN antibody prior to infection with H. capsulatum (2 x 10(6) yeasts, i.v.) and by comparing the severity of infection between BALB/c IFN gene knockout mice (GKO) and congenic control animals. In two separate studies, we found that anti-IFN treatment caused a dramatic loss of resistance to lethal infection and resulted in earlier mortality of IFN-depleted animals compared with normal IgG or no treatment (P<0.001). GKO mice were significantly (P<0.001) more susceptible to lethal infection than were control animals, and histological studies corroborated this. These studies clearly demonstrate that IFN is a vital part of the host's innate resistance to systemic infection with H. capsulatum and provide an additional rationale for studying IFN as an immunomodulatory therapeutic for the treatment of this disease.  相似文献   

3.
4.
5.
6.
The role of cytokines and chemokines in Histoplasma capsulatum infection   总被引:1,自引:0,他引:1  
Kroetz DN  Deepe GS 《Cytokine》2012,58(1):112-117
Histoplasma capsulatum is a prevalent fungal pathogen in the United States, infecting approximately 500,000 individuals each year. Host protection requires an intact cell-mediated immune response. In this review, we will discuss how cytokines and chemokines influence protective immunity in H. capsulatum infection.  相似文献   

7.
Histoplasma capsulatum is a dimorphic fungal pathogen that survives and replicates within macrophages (Mphi). To identify specific genes required for intracellular survival, we utilized Agrobacterium tumefaciens-mediated mutagenesis, and screened for H. capsulatum insertional mutants that were unable to survive in human Mphi. One colony was identified that had an insertion within VMA1, the catalytic subunit A of the vacuolar ATPase (V-ATPase). The vma1 mutant (vma1::HPH) grew normally on iron-replete medium, but not on iron-deficient media. On iron-deficient medium, the growth of the vma1 mutant was restored in the presence of wild-type (WT) H. capsulatum yeasts, or the hydroxamate siderophore, rhodotorulic acid. However, the inability to replicate within Mphi was only partially restored by the addition of exogenous iron. The vma1::HPH mutant also did not grow as a mold at 28 degrees C. Complementation of the mutant (vma/VMA1) restored its ability to replicate in Mphi, grow on iron-poor medium and grow as a mold at 28 degrees C. The vma1::HPH mutant was avirulent in a mouse model of histoplasmosis, whereas the vma1/VMA1 strain was as pathogenic as WT yeasts. These studies demonstrate the importance of V-ATPase function in the pathogenicity of H. capsulatum, in iron homeostasis and in fungal dimorphism.  相似文献   

8.
9.
Deletion of genes in a pathogen is commonly associated with a reduction in its ability to cause disease. However, some rare cases have been described in the literature whereby deletion of a gene results in an increase in virulence. Recently, there have been several reports of hypervirulence resulting from gene deletion in Mycobacterium tuberculosis. Here, we explore this phenomenon in the context of the interaction between the pathogen and the host response.  相似文献   

10.
11.
12.
结核分枝杆菌感染实验模型   总被引:3,自引:1,他引:2  
结核分枝杆菌是引起人结核病的主要病原,全世界约有1/3人口感染结核分枝杆菌。尽管该病原可感染并引起许多动物疾病,但人类是其中心宿主。为研究结核分枝杆菌的致病机理及宿主对本病原的保护性和免疫病理学反应,选择合适的动物模型非常必要。本文阐述了结核病研究中常用的实验模型及各种模型的优缺点。实验模型的合理应用将促进我们对结核病的认识,从中获取的资料将有助于我们发现更好的预防和治疗方案。  相似文献   

13.
Iron is one of the crucial elements required for the growth of Mycobacterium tuberculosis. However, excess free iron becomes toxic for the cells because it catalyzes the production of reactive oxygen radicals, leading to oxidative damage. Hence, it is essential for the pathogen to have the ability to store intracellular iron in an iron-rich environment and utilize it under iron depletion. M. tuberculosis has two iron storage proteins, namely BfrA (Rv1876; a bacterioferritin) and BfrB (Rv3841; a ferritin-like protein). However, the demonstration of biological significance requires the disruption of relevant genes and the evaluation of the resulting mutant for its ability to survive in the host and cause disease. In this study, we have disrupted bfrA and bfrB of M. tuberculosis and demonstrated that these genes are crucial for the storage and supply of iron for the growth of bacteria and to withstand oxidative stress in vitro. In addition, the bfrA bfrB double mutant (H37Rv ΔbfrA ΔbfrB) exhibited a marked reduction in its ability to survive inside human macrophages. Guinea pigs infected with H37Rv ΔbfrA ΔbfrB exhibited a marked diminution in the dissemination of the bacilli to spleen compared to that of the parental strain. Moreover, guinea pigs infected with H37Rv ΔbfrA ΔbfrB exhibited significantly reduced pathological damage in spleen and lungs compared to that of animals infected with the parental strain. Our study clearly demonstrates the importance of these iron storage proteins in the survival and pathogenesis of M. tuberculosis in the host and establishes them as attractive targets for the development of new inhibitors against mycobacterial infections.  相似文献   

14.
Histoplasma capsulatum is a dimorphic fungus that causes respiratory and systemic disease and is capable of surviving and replicating within macrophages. The virulence of Histoplasma has been linked to cell wall alpha-(1,3)-glucan; however, the role of this polysaccharide during infection, its organization within the cell wall, and its synthesis and regulation remain poorly understood. To identify genes involved in the biosynthesis of alpha-(1,3)-glucan, we employed a forward genetics strategy to isolate physically marked mutants with reduced alpha-(1,3)-glucan. Insertional mutants were generated in a virulent strain of H. capsulatum by optimization of Agrobacterium tumefaciens-mediated transformation. Approximately 90% of these mutants possessed single insertions with no chromosomal rearrangements or deletions in the host genome. To confirm the role and specificity of identified candidate genes, we phenocopied the disrupted locus by either RNA interference or targeted gene deletion. Our findings indicate alpha-(1,3)-glucan production requires the function of the AMY1 gene product, a novel protein with homology to the alpha-amylase family of glycosyl hydrolases, and UGP1, a UTP-glucose-1-phosphate uridylyltransferase which synthesizes UDP-glucose monomers. Loss of AMY1 function attenuated the ability of Histoplasma to kill macrophages and to colonize murine lungs.  相似文献   

15.
Mycobacterium tuberculosis is the cause of enormous human morbidity and mortality each year. Although this bacterium can infect and cause disease in many animals, humans are the natural host. For the purposes of studying the pathogenesis of M. tuberculosis, as well as the protective and immunopathologic host responses against this pathogen, suitable animal models must be used. However, modeling the human infection and disease in animals can be difficult, and interpreting the data from animal models must be done carefully. In this paper, the animal models of tuberculosis are discussed, as well as the limitations and advantages of various models. In particular, the lessons we have learned about tuberculosis from the mouse models are highlighted. The careful and thoughtful use of animal models is essential to furthering our understanding of M. tuberculosis, and this knowledge will enhance the discovery of improved treatment and prevention strategies.  相似文献   

16.
The pathogenic fungus, Histoplasma capsulatum, causes the respiratory and systemic disease 'histoplasmosis'. This disease is primarily acquired via inhalation of aerosolized microconidia or hyphal fragments of H. capsulatum. Evolution of this respiratory disease depends on the ability of H. capsulatum yeasts to survive and replicate within alveolar macrophages. It is known that adhesion to host cells is the first step in colonization and biofilm formation. Some microorganisms become attached to biological and non-biological surfaces due to the formation of biofilms. Based on the importance of biofilms and their persistence on host tissues and cell surfaces, the present study was designed to investigate biofilm formation by H. capsulatum yeasts, as well as their ability to adhere to pneumocyte cells. H. capsulatum biofilm assays were performed in vitro using two different clinical strains of the fungus and biofilms were characterized using scanning electron microscopy. The biofilms were measured using a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium-hydroxide (XTT) reduction assay. The results showed that both the H. capsulatum strains tested were very efficient at adhering to host cells and forming biofilm. Therefore, this is a possible survival strategy adopted by this fungus.  相似文献   

17.
18.
Histoplasma capsulatum is the most common cause of invasive fungal pulmonary disease worldwide. The interaction of H. capsulatum with a host is a complex, dynamic process. Severe disease most commonly occurs in individuals with compromised immunity, and the increasing utilization of immunomodulators in medicine has revealed significant risks for reactivation disease in patients with latent histoplasmosis. Fortunately, there are well developed molecular tools and excellent animal models for studying H. capsulatum virulence and numerous recent advances have been made regarding the pathogenesis of this fungus that will improve our capacity to combat disease.  相似文献   

19.
Mycobacterium tuberculosis is a bacterial pathogen that can persist within an infected individual for extended periods of time without causing overt, clinical disease, in a state normally referred to as latent or chronic tuberculosis. Although the replicative state of the bacterium during this period is a matter of some conjecture, recent developments have indicated that the bacterium requires the regulated expression of a set of genes and metabolic pathways to maintain a persistent infection in an immunocompetent host. The characterization of these gene products and their role in bacterial metabolism and physiology is starting to provide insights into the mechanisms that M. tuberculosis has evolved to adopt its highly successful mode of pathogenicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号