首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During Drosophila eye development, the proneural gene atonal specifies founding R8 photoreceptors of individual ommatidia, evenly spaced relative to one another in a pattern that prefigures ommatidial organisation in the mature compound eye. Beyond providing neural competence, however, it has remained unclear to what extent atonal controls specific R8 properties. We show here that reduced Atonal function gives rise to R8 photoreceptors that are functionally compromised: both recruitment and axon pathfinding defects are evident. Conversely, prolonged Atonal expression in R8 photoreceptors induces defects in inductive recruitment as a consequence of hyperactive EGFR signalling. Surprisingly, such prolonged expression also results in R8 pattern formation defects in a process associated with both Hedgehog and Receptor Tyrosine Kinase signalling. Our results strongly suggest that Atonal regulates signalling and other properties of R8 precursors.  相似文献   

2.
Neuronal differentiation in Drosophila ommatidium   总被引:19,自引:0,他引:19  
Using monoclonal and polyclonal antibodies as differentiation markers, we have found that the eight photoreceptors of the Drosophila ommatidium differentiate in a fixed sequence. The foundation photoreceptor, R8, expresses neural antigens first. The paired photoreceptors R2/5 are next to express, followed by the pair R3/4, followed by the pair R1/6; R7 is the final photoreceptor to differentiate. From previous studies it is known that Drosophila photoreceptors use local, positional cues to select their identities. Together with the morphological picture of ommatidial development, the sequential order of photoreceptor differentiation demonstrated here suggests that these cues may be encoded in the particular combination of cells an undetermined cell finds itself in contact with.  相似文献   

3.
B J Frankfort  R Nolo  Z Zhang  H Bellen  G Mardon 《Neuron》2001,32(3):403-414
An outstanding model to study how neurons differentiate from among a field of equipotent undifferentiated cells is the process of R8 photoreceptor differentiation during Drosophila eye development. We show that in senseless mutant tissue, R8 differentiation fails and the presumptive R8 cell adopts the R2/R5 fate. We identify senseless repression of rough in R8 as an essential mechanism of R8 cell fate determination and demonstrate that misexpression of senseless in non-R8 photoreceptors results in repression of rough and induction of the R8 fate. Surprisingly, there is no loss of ommatidial clusters in senseless mutant tissue and all outer photoreceptor subtypes can be recruited, suggesting that other photoreceptors can substitute for R8 to initiate recruitment and that R8-specific signaling is not required for outer photoreceptor subtype assignment. A genetic model of R8 differentiation is presented.  相似文献   

4.
The Drosophila EGF receptor is required for differentiation of many cell types during eye development. We have used mosaic analysis with definitive null mutations to analyze the effects of complete absence of EGFR, Ras or Raf proteins during eye development. The Egfr, ras and raf genes are each found to be essential for recruitment of R1-R7 cells. In addition Egfr is autonomously required for MAP kinase activation. EGFR is not essential for R8 cell specification, either alone or redundantly with any other receptor that acts through Ras or Raf, or by activating MAP kinase. As with Egfr, loss of ras or raf perturbs the spacing and arrangement of R8 precursor cells. R8 cell spacing is not affected by loss of argos in posteriorly juxtaposed cells, which rules out a model in which EGFR acts through argos expression to position R8 specification in register between adjacent columns of ommatidia. The R8 spacing role of the EGFR was partially affected by simultaneous deletion of spitz and vein, two ligand genes, but the data suggest that EGFR activation independent of spitz and vein is also involved. The results prove that R8 photoreceptors are specified and positioned by distinct mechanisms from photoreceptors R1-R7.  相似文献   

5.
6.
7.
Comparison between the inputs of photoreceptors with different spectral sensitivities is required for color vision. In Drosophila, this is achieved in each ommatidium by the inner photoreceptors R7 and R8. Two classes of ommatidia are distributed stochastically in the retina: 30% contain UV-Rh3 in R7 and blue-Rh5 in R8, while the remaining 70% contain UV-Rh4 in R7 and green-Rh6 in R8. We show here that the distinction between the rhodopsins expressed in the two classes of ommatidia depends on a series of highly conserved homeodomain binding sites present in the rhodopsin promoters. The homeoprotein Orthodenticle acts through these sites to activate rh3 and rh5 in their specific ommatidial subclass and through the same sites to prevent rh6 expression in outer photoreceptors. Therefore, Otd is a key player in the terminal differentiation of subtypes of photoreceptors by regulating rhodopsin expression, a function reminiscent of the role of one of its mammalian homologs, Crx, in eye development.  相似文献   

8.
BACKGROUND: Color vision requires comparison between photoreceptors that are sensitive to different wavelengths of light. In Drosophila, this is achieved by the inner photoreceptors (R7 and R8) that contain different rhodopsins. Two types of comparisons can occur in fly color vision: between the R7 (UV sensitive) and R8 (blue- or green sensitive) photoreceptor cells within one ommatidium (unit eye) or between different ommatidia that contain spectrally distinct inner photoreceptors. Photoreceptors project to the optic lobes: R1-R6, which are involved in motion detection, project to the lamina, whereas R7 and R8 reach deeper in the medulla. This paper analyzes the neural network underlying color vision into the medulla. RESULTS: We reconstruct the neural network in the medulla, focusing on neurons likely to be involved in processing color vision. We identify the full complement of neurons in the medulla, including second-order neurons that contact both R7 and R8 from a single ommatidium, or contact R7 and/or R8 from different ommatidia. We also examine third-order neurons and local neurons that likely modulate information from second-order neurons. Finally, we present highly specific tools that will allow us to functionally manipulate the network and test both activity and behavior. CONCLUSIONS: This precise characterization of the medulla circuitry will allow us to understand how color vision is processed in the optic lobe of Drosophila, providing a paradigm for more complex systems in vertebrates.  相似文献   

9.
10.
The Drosophila eye is widely used as a model system to study neuronal differentiation, survival and axon projection. Photoreceptor differentiation starts with the specification of a founder cell R8, which sequentially recruits other photoreceptor neurons to the ommatidium. The eight photoreceptors that compose each ommatidium exist in two chiral forms organized along two axes of symmetry and this pattern represents a paradigm to study tissue polarity. We have developed a method of fluoroscopy to visualize the different types of photoreceptors and the organization of the ommatidia in living animals. This allowed us to perform an F(1) genetic screen to isolate mutants affecting photoreceptor differentiation, survival or planar polarity. We illustrate the power of this detection system using known genetic backgrounds and new mutations that affect ommatidial differentiation, morphology or chirality.  相似文献   

11.
12.
13.
EGF receptor signalling plays diverse inductive roles during development. To achieve this, its activity must be carefully regulated in a variety of ways to control the time, pattern, intensity and duration of signalling. We show that the cell surface protein Echinoid is required to moderate Egfr signalling during R8 photoreceptor selection by the proneural gene atonal during Drosophila eye development. In echinoid mutants, Egfr signalling is increased during R8 formation, and this causes isolated R8 cells to be replaced by groups of two or three cells. This mutant phenotype resembles the normal inductive function of Egfr in other developmental contexts, particularly during atonal-controlled neural recruitment of chordotonal sense organ precursors. We suggest that echinoid acts to prevent a similar inductive outcome of Egfr signalling during R8 selection.  相似文献   

14.
Z C Lai  G M Rubin 《Cell》1992,70(4):609-620
Loss-of-function mutations in the yan gene result in the differentiation of supernumerary photoreceptors in the Drosophila eye. The yan gene encodes a protein with an ETS DNA-binding domain that accumulates in the nuclei of undifferentiated cells during the early stages of eye development. Our data suggest that yan functions as a cell-autonomous negative regulator of photoreceptor development; in the presumptive R7 and cone cells, yan appears to act antagonistically to the proneural signal mediated by sevenless and Ras1.  相似文献   

15.
The R7 and R8 photoreceptor cells of the Drosophila retina are thought to mediate color discrimination and polarized light detection. This is based on the patterned expression of different visual pigments, rhodopsins, in different photoreceptor cells. In this report, we examined the developmental timing of retinal patterning. There is genetic evidence that over the majority of the eye, patterned expression of opsin genes is regulated by a signal from one subtype of R7 cells to adjacent R8 cells. We examined the onset of expression of the rhodopsin genes to determine the latest time point by which photoreceptor subtype commitment must have occurred. We found that the onset of rhodopsin expression in all photoreceptors of the compound eye occurs during a narrow window from 79% to 84% of pupal development (approximately 8 h), pupal stages P12-P14. Rhodopsin 1 has the earliest onset, followed by Rhodopsins 3, 4, and 5 at approximately the same time, and finally Rhodopsin 6. This sequence mimics the model for how R7 and R8 photoreceptor cells are specified, and defines the timing of photoreceptor cell fate decisions with respect to other events in eye development.  相似文献   

16.
17.
18.
The Drosophila eye is a mosaic that results from the stochastic distribution of two ommatidial subtypes. Pale and yellow ommatidia can be distinguished by the expression of distinct rhodopsins and other pigments in their inner photoreceptors (R7 and R8), which are implicated in color vision. The pale subtype contains ultraviolet (UV)-absorbing Rh3 in R7 and blue-absorbing Rh5 in R8. The yellow subtype contains UV-absorbing Rh4 in R7 and green-absorbing Rh6 in R8. The exclusive expression of one rhodopsin per photoreceptor is a widespread phenomenon, although exceptions exist. The mechanisms leading to the exclusive expression or to co-expression of sensory receptors are currently not known. We describe a new class of ommatidia that co-express rh3 and rh4 in R7, but maintain normal exclusion between rh5 and rh6 in R8. These ommatidia, which are localized in the dorsal eye, result from the expansion of rh3 into the yellow-R7 subtype. Genes from the Iroquois Complex (Iro-C) are necessary and sufficient to induce co-expression in yR7. Iro-C genes allow photoreceptors to break the "one receptor-one neuron" rule, leading to a novel subtype of broad-spectrum UV- and green-sensitive ommatidia.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号