首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
An alkylation repair deficient mutant of Escherichia coli (tag ada), lacking DNA glycosylase activity for removal of alkylated bases, was transformed by a genomic yeast DNA library and clones selected which survived plating on medium containing the alkylating agent methylmethane sulphonate. Three distinct yeast clones were identified which were able to suppress the alkylation sensitive phenotype of the bacterial mutant. Restriction enzyme analysis revealed common DNA fragments present in all three clones spanning 2 kb of yeast DNA. DNA from this region was sequenced and analysed for possible translation of polypeptides with any homology to either the Tag or the AlkA DNA glycosylases of E. coli. One open reading frame of 296 amino acids was identified encoding a putative protein with significant homology to AlkA. DNA containing the open reading frame was subcloned in E. coli expression vectors and cell extracts assayed for alkylbase DNA glycosylase activity. It appeared that such activity was expressed at levels sufficiently high for enzyme purification. The molecular weight of the purified protein was determined by SDS-PAGE to be 35,000 daltons, in good agreement with the 34,340 value calculated from the sequence. The yeast enzyme was able to excise 7-methylguanine as well as 3-methyladenine from dimethyl sulphate treated DNA, confirming the related nature of this enzyme to the AlkA DNA glycosylase from E. coli.  相似文献   

2.
DNA is constantly exposed to endogenous andexogenous alkylating agents that can modify its bases,resulting in mutagenesis in the absence of DNA repair [1,2]. Alkylation damage is removed by the action of DNA glycosylases, which initiate the base excision repair pathway and protect the sequence information of the genome [3-5]. We have identified a new class of methylpurine DNA glycosylase, designated MpgII, that is a member of the endonuclease III family of DNA repair enzymes. We expressed and purified MpgII from Thermotoga maritima and found that the enzyme releases both 7-methylguanine and 3-methyladenine from DNA. We cloned the MpgII genes from T. maritima and from Aquifex aeolicus and found that both genes could restore methylmethanesulfonate (MMS) resistance to Escherichia coli alkA tagA double mutants, which are deficient in the repair of alkylated bases. Analogous genes are found in other Bacteria and Archaea and appear to be the only genes coding for methylpurine DNA glycosylase activity in these organisms. MpgII is the fifth member of the endonuclease III family of DNA repair enzymes, suggesting that the endonuclease III protein scaffold has been modified during evolution to recognize and repair a variety of DNA damage.  相似文献   

3.
Chromosomal rearrangements and base substitutions contribute to the large intraspecies genetic diversity of Helicobacter pylori. Here we explored the base excision repair pathway for the highly mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG), a ubiquitous form of oxidized guanine. In most organisms, 8-oxoG is removed by a specific DNA glycosylase (Fpg in bacteria or OGG1 in eukaryotes). In the case where replication of the lesion yields an A/8-oxoG base pair, a second DNA glycosylase (MutY) can excise the adenine and thus avoid the fixation of the mutation in the next round of replication. In a genetic screen for H. pylori genes complementing the hypermutator phenotype of an Escherichia coli fpg mutY strain, open reading frame HP0142, a putative MutY coding gene, was isolated. Besides its capacity to complement E. coli mutY strains, HP0142 expression resulted in a strong adenine DNA glycosylase activity in E. coli mutY extracts. Consistently, the purified protein also exhibited such an activity. Inactivation of HP0142 in H. pylori resulted in an increase in spontaneous mutation frequencies. An Mg-dependent AP (abasic site) endonuclease activity, potentially allowing the processing of the abasic site resulting from H. pylori MutY activity, was detected in H. pylori cell extracts. Disruption of HP1526, a putative xth homolog, confirmed that this gene is responsible for the AP endonuclease activity. The lack of evidence for an Fpg/OGG1 functional homolog is also discussed.  相似文献   

4.
5.
6.
DNA glycosylases catalyze the excision of chemically modified bases from DNA. Although most glycosylases are specific to a particular base, the 3-methyladenine (m3A) DNA glycosylases include both highly specific enzymes acting on a single modified base, and enzymes with broader specificity for alkylation-damaged DNA. Our structural understanding of these different enzymatic specificities is currently limited to crystal and NMR structures of the unliganded enzymes and complexes with abasic DNA inhibitors. Presented here are high-resolution crystal structures of the m3A DNA glycosylase from Helicobacter pylori (MagIII) in the unliganded form and bound to alkylated bases 3,9-dimethyladenine and 1,N6-ethenoadenine. These are the first structures of a nucleobase bound in the active site of a m3A glycosylase belonging to the helix-hairpin-helix superfamily. MagIII achieves its specificity for positively-charged m3A not by direct interactions with purine or methyl substituent atoms, but rather by stacking the base between two aromatic side chains in a pocket that excludes 7-methylguanine. We report base excision and DNA binding activities of MagIII active site mutants, together with a structural comparison of the HhH glycosylases.  相似文献   

7.
BACKGROUND: Endonuclease III is the prototype for a family of DNA-repair enzymes that recognize and remove damaged and mismatched bases from DNA via cleavage of the N-glycosidic bond. Crystal structures for endonuclease III, which removes damaged pyrimidines, and MutY, which removes mismatched adenines, show a highly conserved structure. Although there are several models for DNA binding by this family of enzymes, no experimental structures with bound DNA exist for any member of the family. RESULTS: Nuclear magnetic resonance (NMR) spectroscopy chemical-shift perturbation of backbone nuclei (1H, 15N, 13CO) has been used to map the DNA-binding site on Archaeoglobus fulgidus endonuclease III. The experimentally determined interaction surface includes five structural elements: the helix-hairpin-helix (HhH) motif, the iron-sulfur cluster loop (FCL) motif, the pseudo helix-hairpin-helix motif, the helix B-helix C loop, and helix H. The elements form a continuous surface that spans the active site of the enzyme. CONCLUSIONS: The enzyme-DNA interaction surface for endonuclease III contains five elements of the protein structure and suggests that DNA damage recognition may require several specific interactions between the enzyme and the DNA substrate. Because the target DNA used in this study contained a generic apurinic/apyrimidinic (AP) site, the binding interactions we observed for A. fulgidus endonuclease III should apply to all members of the endonuclease III family and several interactions could apply to the endonuclease III/AlkA (3-methyladenine DNA glycosylase) superfamily.  相似文献   

8.
Escherichia coli has two DNA glycosylases for repair of DNA damage caused by simple alkylating agents. The inducible AlkA DNA glycosylase (3-methyladenine [m3A] DNA glycosylase II) removes several different alkylated bases including m3A and 3-methylguanine (m3G) from DNA, whereas the constitutively expressed Tag enzyme (m3A DNA glycosylase I) has appeared to be specific for excision of m3A. In this communication we have reexamined the substrate specificity of Tag by using synthetic DNA rich in GC base pairs to facilitate detection of any possible methyl-G removal. In such DNA alkylated with [3H]dimethyl sulphate, we found that m3G was excised from double-stranded DNA by both glycosylases, although more efficiently by AlkA than by Tag. This was further confirmed using both N-[3H]methyl-N-nitrosourea- and [3H]dimethyl sulphate-treated native DNA, from which Tag excised m3G with an efficiency that was about 70 times lower than for AlkA. These results can explain the previous observation that high levels of Tag expression will suppress the alkylation sensitivity of alkA mutant cells, further implying that m3G is formed in quantity sufficient to represent an important cytotoxic lesion if left unrepaired in cells exposed to alkylating agents.  相似文献   

9.
10.
The adaptive response in E. coli   总被引:1,自引:0,他引:1  
M Defais 《Biochimie》1985,67(3-4):357-360
The adaptive response appears in E. coli after exposure to low levels of alkylating agents. This system is under the positive control of the ada gene. At least two enzymes are induced during the response: 3-methyladenine DNA glycosylase II and O6-methylguanine DNA methyltransferase. The latter is also the product of the ada gene.  相似文献   

11.
Helicobacter pylori has a highly variable genome with ongoing diversification via inter- and intragenomic recombination and spontaneous mutation. DNA repair genes modulating mutation and recombination rates that influence diversification have not been well characterized for H. pylori. To examine the role of putative base excision repair ung and mutY glycosylase and xthA apurinic/apyrimidinic endonuclease genes in H. pylori, mutants of each were constructed in strain JP26 by allelic exchange. Spontaneous mutation frequencies of JP26 mutY mutants, assessed by rifampin resistance, were consistently higher (26-fold) than that of the wild type, whereas the ung and xthA mutants showed smaller increases. In trans complementation of the JP26 mutY mutant restored spontaneous mutation frequencies to wild-type levels. In cross-species studies, H. pylori mutY complemented an Escherichia coli mutY mutant and vice versa. In contrast, the ung and mutY mutants did not show higher frequencies of intergenomic recombination or greater sensitivity to UV-induced DNA damage than the wild type. The H. pylori mutY open reading frame contains an eight-adenine homonucleotide tract; we provide evidence that this is subject to slipped-strand mispairing, leading to frameshifts that eliminate gene function. Our findings indicate that H. pylori possesses phase-variable base excision repair, consistent with a tension between repair and mutation.  相似文献   

12.
We have purified 3-methyladenine DNA glycosylase I from Escherichia coli to apparent physical homogeneity. The enzyme preparation produced a single band of Mr 22,500 upon sodium dodecyl sulphate/polyacrylamide gel electrophoresis in good agreement with the molecular weight deduced from the nucleotide sequence of the tag gene (Steinum, A.-L. and Seeberg, E. (1986) Nucl. Acids Res. 14, 3763-3772). HPLC confirmed that the only detectable alkylation product released from (3H)dimethyl sulphate treated DNA was 3-methyladenine. The DNA glycosylase activity showed a broad pH optimum between 6 and 8.5, and no activity below pH 5 and above pH 10. MgSO4, CaCl2 and MnCl2 stimulated enzyme activity, whereas ZnSO4 and FeCl3 inhibited the enzyme at 2 mM concentration. The enzyme was stimulated by caffeine, adenine and 3-methylguanine, and inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide and 3-methyladenine. The enzyme showed no detectable endonuclease activity on native, depurinated or alkylated plasmid DNA. However, apurinic sites were introduced in alkylated DNA as judged from the strand breaks formed by mixtures of the tag enzyme and the bacteriophage T4 denV enzyme which has apurinic/apyrimidinic endonuclease activity. It was calculated that wild-type E. coli contains approximately 200 molecules per cell of 3-methyladenine DNA glycosylase I.  相似文献   

13.
Nucleotide sequence of a DNA fragment containing the alkA gene and its control region has been determined using a chemical method. Only one open reading frame responsible for 3-methyladenine DNA glycosylase II was found. The hypothetical polypeptide deduced from the DNA sequence, with a molecular weight of 31,400, has an amino-terminal sequence and total amino acid composition identical to that of purified 3-methyladenine DNA glycosylase II. We constructed hybrid plasmids carrying an alkA'-lacZ' fusion, with the proper control region for alkA expression. A hybrid polypeptide with beta-galactosidase activity was formed when lac mutant cells harboring such plasmids were incubated with low doses of N-methyl-N'-nitro-N-nitrosoguanidine or methylmethane sulfonate. Other DNA-damaging agents, such as ethylmethane sulfonate, nalidixic acid, and ultraviolet light did not induce the enzyme activity. The induction was controlled by the ada and adc, but not by the recA and lexA genes.  相似文献   

14.
The Escherichia coli endonuclease III (Nth-Eco) protein is involved in the removal of damaged pyrimidine residues from DNA by base excision repair. It is an iron-sulphur enzyme possessing both DNA glycosylase and apurinic/apyrimidinic lyase activities. A database homology search identified an open reading frame in genomic sequences of Schizosaccharomyces pombe which encodes a protein highly similar to Nth-Eco. The gene has been subcloned in an expression vector and the protein purified to apparent homogeneity. The S.pombe Nth homologue (Nth-Spo) is a 40.2 kDa protein of 355 amino acids. Nth-Spo possesses glycosylase activity on different types of DNA substrates with pyrimidine damage, being able to release both urea and thymine glycol from double-stranded polymers. The eukaryotic protein removes urea more efficiently than the prokaryotic enzyme, whereas its efficiency in excising thymine glycol is lower. A nicking assay was used to show that the enzyme also exhibits an AP lyase activity on UV- and gamma-irradiated DNA substrates. These findings show that Nth protein is structurally and functionally conserved from bacteria to fission yeast.  相似文献   

15.
Endonuclease III (Nth) enzyme from Escherichia coli is involved in base excision repair of oxidised pyrimidine residues in DNA. The Schizosaccharomyces pombe Nth1 protein is a sequence and functional homologue of E. coli Nth, possessing both DNA glycosylase and apurinic/apyrimidinic (AP) lyase activity. Here, we report the construction and characterization of the S. pombe nth1 mutant. The nth1 mutant exhibited no enhanced sensitivity to oxidising agents, UV or gamma-irradiation, but was hypersensitive to the alkylating agent methyl methanesulphonate (MMS). Analysis of base excision from DNA exposed to [3H]methyl-N-nitrosourea showed that the purified Nth1 enzyme did not remove alkylated bases such as 3-methyladenine and 7-methylguanine whereas methyl-formamidopyrimidine was excised efficiently. The repair of AP sites in S. pombe has previously been shown to be independent of Apn1-like AP endonuclease activity, and the main reason for the MMS sensitivity of nth1 cells appears to be their lack of AP lyase activity. The nth1 mutant also exhibited elevated frequencies of spontaneous mitotic intrachromosomal recombination, which is a phenotype shared by the MMS-hypersensitive DNA repair mutants rad2, rhp55 and NER repair mutants rad16, rhp14, rad13 and swi10. Epistasis analyses of nth1 and these DNA repair mutants suggest that several DNA damage repair/tolerance pathways participate in the processing of alkylation and spontaneous DNA damage in S. pombe.  相似文献   

16.
Repair of alkylated DNA: recent advances   总被引:9,自引:0,他引:9  
  相似文献   

17.
Summary The in vivo excision repair functions of Escherichia coli exonuclease III and 3-methyladenine DNA glycosylase I, and bacteriophage T4 pyrimidine dimer-DNA glycosylase were investigated. Following exposure of bacteriophage T4 or lambda to methyl methanesulfonate or ultraviolet irradiation, survival was determined by plating on E. coli have various genetic backgrounds. Although exonuclease III was shown to participate in base excision repair initiated by 3-methyladenine DNA glcosylase I, it had no detectable role in base excision repair initiated by the T4 pyrimidine dimer-DNA glycosylase. Despite its 3 apurinic/apyrimidinic endonuclease activity in vitro, T4 pyrimidine dimer-DNA glycosylase, even in large quantities, did not complement mutants defective in exonuclease III in the repair of apurinic sites generated by 3-methyladenine DNA glycosylase I in vivo.  相似文献   

18.
The role of nucleotide excision repair and 3-methyladenine DNA glycosylases in removing cytotoxic lesions induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in Salmonella typhimurium and Escherichia coli cells was examined. Compared to the E. coli wild-type strain, the S. typhimurium wild-type strain was more sensitive to the same dose of MNNG. Nucleotide excision repair in both bacterial species does not contribute significantly to the survival after MNNG treatment, indicating that the observed differences in survival between S. typhimurium and E. coli should be attributed to DNA-repair systems other than nucleotide excision repair. The survival of the E. coli alkA mutant strain is seriously affected by the lack of 3-methyladenine DNA glycosylase II, accentuating the importance of this DNA-repair enzyme in protecting E. coli cells against the lethal effects of methylating agents. Following indications from our experiments, the existence of an alkA gene analogue in S. typhimurium has been questioned. Dot-blot hybridisation, using the E. coli alkA gene as a probe, was performed, and such a nucleotide sequence was not detected on S. typhimurium genomic DNA. The existence of constitutive 3-methyladenine DNA glycosylase, analogous to the E. coli Tag gene product in S. typhimurium cells, suggested by the results is discussed.  相似文献   

19.
The Saccharomyces cerevisiae APN1 gene encoding an AP endonuclease/3'-diesterase was engineered in vitro for expression in Escherichia coli. The expression vector directs the synthesis in E. coli of a Mr 40,500 protein that reacts with anti-Apn1 antibodies and has the DNA-repair activities characteristic of Apn1 isolated from yeast. A band corresponding to Apn1 was observed in DNA repair activity gels only with extracts of E. coli harbouring the APN1 expression plasmid. Expression of Apn1 conferred resistance to oxidants and alkylating agents in E. coli lacking exonuclease III and endonuclease IV. For H2O2 damage, this rescue effect was correlated with the repair of oxidative lesions in the bacterial chromosome by the Apn1 protein. Thus, Apn1 can function in bacteria in a manner similar to its proposed multiple functions in yeast.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号