首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glucocorticoid receptor (GR) is phosphorylated at three major sites on its N terminus (S203, S211, and S226), and phosphorylation modulates GR-regulatory functions in vivo. We examined the phosphorylation site interdependence, the contribution of the receptor C-terminal ligand-binding domain, and the participation of protein phosphatases in GR N-terminal phosphorylation and gene expression. We found that GR phosphorylation at S203 was greater when S226 was not phosphorylated and vice versa, indicative of intersite dependency. We also observed that a GR derivative lacking the ligand-binding domain, which no longer binds the heat shock protein 90 (Hsp90) complex, exhibits increased GR phosphorylation at all three sites as compared with the full-length receptor. A GR mutation (F602S) that produces a receptor less dependent on Hsp90 for function as well as treatment with the Hsp90 inhibitor geldanamycin also increased basal GR phosphorylation at a subset of sites. Pharmacological inhibition of serine/threonine protein phosphatases increased GR basal phosphorylation. Likewise, a reduction in protein phosphatase 5 protein levels enhanced GR phosphorylation at a subset of sites and selectively reduced the induction of endogenous GR target genes. Together, our findings suggest that GR undergoes a phosphorylation/dephosphorylation cycle that maintains steady-state receptor phosphorylation at a low basal level in the absence of ligand. Our findings also suggest that the ligand-dependent increase in GR phosphorylation results, in part, from the dissociation of a ligand-binding domain-linked protein phosphatase(s), and that changes in the intracellular concentration of protein phosphatase 5 differentially affect GR target gene expression.  相似文献   

2.
Leishmania major aquaglyceroporin (LmjAQP1) adventitiously facilitates the uptake of antimonite [Sb(III)], an active form of Pentostam® or Glucantime®, which are the first line of defence against all forms of leishmaniasis. The present paper shows that LmjAQP1 activity is modulated by the mitogen‐activated protein kinase, LmjMPK2. Leishmania parasites coexpressing LmjAQP1 and LmjMPK2 show increased Sb(III) uptake and increased Sb(III) sensitivity. When subjected to a hypo‐osmotic stress, these cells show faster volume recovery than cells expressing LmjAQP1 alone. LmjAQP1 is phosphorylated in vivo at Thr‐197 and this phosphorylation requires LmjMPK2 activity. Lys‐42 of LmjMPK2 is critical for its kinase activity. Cells expressing altered T197A LmjAQP1 or K42A LmjMPK2 showed decreased Sb(III) influx and a slower volume recovery than cells expressing wild‐type proteins. Phosphorylation of LmjAQP1 led to a decrease in its turnover rate affecting LmjAQP1 activity. Although LmjAQP1 is localized to the flagellum of promastigotes, upon phosphorylation, it is relocalized to the entire surface of the parasite. Leishmania mexicana promastigotes with an MPK2 deletion showed reduced Sb(III) uptake and slower volume recovery than wild‐type cells. This is the first report where a parasite aquaglyceroporin activity is post‐translationally modulated by a mitogen‐activated protein kinase.  相似文献   

3.
4.
Modulation of testicular macrophage activity by collagenase   总被引:2,自引:0,他引:2  
Testicular macrophages (TMs) are located in the interstitial tissue of male gonad. These phagocytic cells take part in forming the organ-specific functional blood-testis barrier and participate in the regulation of the local hormonal balance. In the present study, we isolated TMs from testicular tissues using previously described methods--mechanical (M-TMs) or enzymatic, by treatment with collagenase (E-TMs) and then we studied production by these cells of several cytokines and reactive oxygen intermediates (ROI's). Similarly treated oil-induced peritoneal macrophages (PMs) were used as control cells. PMs had a higher baseline level of production of TNF-alpha, IL-6, IL-10 and IL-12 than M-TMs and collagenase treatment increased the production of these cytokines (except IL-12) by both cell populations. This effect was significantly more expressed in TMs. In contrast to PMs, TMs produced little ROI's when stimulated by zymosan. We conclude that in the case of local inflammation in the testis, ROI-negative TMs do not contribute to the tissue damage and instead may direct the local immune response into humoral pathway.  相似文献   

5.
6.
The tyrosine kinase Src is upregulated in several cancer cells. In such cells, there is a metabolic reprogramming elevating aerobic glycolysis that seems partly dependent on Src activation. Src kinase was recently shown to be targeted to mitochondria where it modulates mitochondrial bioenergetics in non-proliferative tissues and cells. The main goal of our study was to determine if increased Src kinase activity could also influence mitochondrial metabolism in cancer cells (143B and DU145 cells). We have shown that 143B and DU145 cells produce most of the ATP through glycolysis but also that the inhibition of OXPHOS led to a significant decrease in proliferation which was not due to a decrease in the total ATP levels. These results indicate that a more important role for mitochondria in cancer cells could be ensuring mitochondrial functions other than ATP production. This study is the first to show a putative influence of intramitochondrial Src kinase on oxidative phosphorylation in cancer cells. Indeed, we have shown that Src kinase inhibition led to a decrease in mitochondrial respiration via a specific decrease in complex I activities (NADH-ubiquinone oxidoreductase). This decrease is associated with a lower phosphorylation of the complex I subunit NDUFB10. These results suggest that the preservation of complex I function by mitochondrial Src kinase could be important in the development of the overall phenotype of cancer.  相似文献   

7.
Evidence is presented for a testicular protein kinase activity capable of stimulating the activity in vitro of a partially purified preparation of the testicular galactolipid sulphotransferase. This enzyme is responsible for the synthesis of the major mammalian testicular glycolipid, sulphogalactosylglycerol, and is an early marker of differentiation during spermatogenesis. This stimulatory activity has been separated by affinity chromatography, using 3',5'-ADP-agarose, from both the detergent-solubilized microsomes (microsomal fractions) and the soluble fraction of the testicular homogenate. The stimulator was eluted from the affinity matrix by either a salt, or, more selectively, a cyclic AMP gradient. Thus this matrix can function as an analogue of 3',5'-cyclic AMP. The activity of the sulphotransferase stimulator was ATP-dependent and coincident with protein kinase activity. Sulphotransferase activity was also stimulated in the presence of commercial preparations of cyclic AMP-dependent protein kinase and stimulation was prevented in the presence of kinase inhibitors. Our results suggest that sulphogalactolipid biosynthesis is regulated by a phosphorylation process during spermatogenesis. In addition, our results suggest that affinity chromatography on 3',5'-ADP-agarose may provide a general method for the purification of cyclic AMP-dependent kinases.  相似文献   

8.
9.
Extracellular calcium rapidly controls PTH secretion through binding to the G protein-coupled calcium-sensing receptor (CASR) expressed in parathyroid glands. Very little is known about the regulatory proteins involved in desensitization of CASR. G protein receptor kinases (GRK) and beta-arrestins are important regulators of agonist-dependent desensitization of G protein-coupled receptors. In the present study, we investigated their role in mediating agonist-dependent desensitization of CASR. In heterologous cell culture models, we found that the transfection of GRK4 inhibits CASR signaling by enhancing receptor phosphorylation and beta-arrestin translocation to the CASR. In contrast, we found that overexpression of GRK2 desensitizes CASR by classical mechanisms as well as through phosphorylation-independent mechanisms involving disruption of Galphaq signaling. In addition, we observed lower circulating PTH levels and an attenuated increase in serum PTH after hypocalcemic stimulation in beta-arrestin2 null mice, suggesting a functional role of beta-arrestin2-dependent desensitization pathways in regulating CASR function in vivo. We conclude that GRKs and beta-arrestins play key roles in regulating CASR responsiveness in parathyroid glands.  相似文献   

10.
The levels of the cGMP in smooth muscle of the gut reflect continued synthesis by soluble guanylate cyclase (GC) and breakdown by phosphodiesterase 5 (PDE5). Soluble GC is a haem-containing, heterodimeric protein consisting alpha- and beta-subunits: each subunit has N-terminal regulatory domain and a C-terminal catalytic domain. The haem moiety acts as an intracellular receptor for nitric oxide (NO) and determines the ability of NO to activate the enzyme and generate cGMP. In the present study the mechanism by which protein kinases regulate soluble GC in gastric smooth muscle was examined. Sodium nitroprusside (SNP) acting as a NO donor stimulated soluble GC activity and increased cGMP levels. SNP induced soluble GC phosphorylation in a concentration-dependent fashion. SNP-induced soluble GC phosphorylation was abolished by the selective cGMP-dependent protein kinase (PKG) inhibitors, Rp-cGMPS and KT-5823. In contrast, SNP-stimulated soluble GC activity and cGMP levels were significantly enhanced by Rp-cGMPS and KT-5823. Phosphorylation and inhibition of soluble GC were PKG specific, as selective activator of cAMP-dependent protein kinase, Sp-5, 6-DCl-cBiMPS had no effect on SNP-induced soluble GC phosphorylation and activity. The ability of PKG to stimulate soluble GC phosphorylation was demonstrated in vitro by back phosphorylation technique. Addition of purified phosphatase 1 inhibited soluble GC phosphorylation in vitro, and inhibition was reversed by a high concentration (10 microM) of okadaic acid. In gastric smooth muscle cells, inhibition of phosphatase activity by okadaic acid increased soluble GC phosphorylation in a concentration-dependent fashion. The increase in soluble GC phosphorylation inhibited SNP-stimulated soluble GC activity and cGMP formation. The results implied the feedback inhibition of soluble GC activity by PKG-dependent phosphorylation impeded further formation of cGMP.  相似文献   

11.
The effects of the nervous system specific protein, S-100, on protein phosphorylation in rat brain is examined. The S-100 protein inhibits the phosphorylation of several soluble brain proteins in a calcium dependent fashion. The most potent effect exhibited by S-100 was on the phosphorylation of a protein having a molecular weight of 73,000. The data suggest that the calcium binding S-100 protein, for which a function has not yet been assigned, may modulate calcium dependent phosphorylation of selected brain proteins.  相似文献   

12.
13.
14.
We have examined the phosphorylation of bovine microtubule-associated protein 4 (MAP4), formerly named MAP-U, by protein kinase C (PKC). When MAP4 was incubated with PKC, about 1 mol of phosphate was incorporated/mol of MAP4. Phosphorylation of MAP4 caused a remarkable decrease in the ability of the MAP to stimulate microtubule assembly. MAP4 consists of an amino-terminal projection domain and a carboxyl-terminal microtubule-binding domain. The carboxyl-terminal domain is subdivided into a Pro-rich region and an assembly-promoting (AP) sequence region containing four tandem repeats of AP sequence that is conserved in MAP4, MAP2, and tau [Aizawa et al. (1990) J. Biol. Chem. 265, 13849-13855]. In order to identify the site of MAP4 phosphorylated by PKC, a series of expressed MAP4 fragments was prepared and treated with the kinase. A fragment corresponding to the Pro-rich region (P fragment) was phosphorylated, while fragments corresponding to the projection domain and the AP sequence region were not. In addition, chymotryptic digestion of an authentic MAP4 prephosphorylated by PKC revealed that phosphate was incorporated almost exclusively into a 27-kDa fragment containing the carboxyl-terminal half of the Pro-rich region. We investigated the phosphorylation site in MAP4 using the P fragment and found that Ser815 was phosphorylated almost exclusively. We conclude that the phosphorylation of a single Ser residue in the Pro-rich region negatively regulates the assembly-promoting activity of MAP4.  相似文献   

15.
Fast synaptic inhibition in the brain is largely mediated by GABA(A) receptors. These ligand-gated ion channels are crucial in the control of cell and network activity. Therefore, modulating their function or cell surface stability will have major consequences for neuronal excitation. It has become clear that the stability and activity of GABA(A) receptors at synapses can be dynamically modulated by receptor trafficking and phosphorylation. Here, we discuss these regulatory mechanisms, and their consequences for the efficacy of GABA(A) receptor mediated synaptic inhibition.  相似文献   

16.
We have reported previously [6] that epidermal growth factor (EGF)-induced down regulation of EGF receptors in normal rat kidney (NRK) cells results in a selective decrease in the in vitro EGF-dependent 32P-phosphorylation of two membrane phosphoproteins of Mr I70K and Mr I50K. In this report, we further characterized the modulation of 32P-phosphorylation of the 170K- and 150K-dalton proteins by down regulation with EGF in NRK cells. While EGF binding to its receptors was a necessary condition to induce loss of EGF-dependent phosphorylation of the 170K- and 150K-dalton proteins, it was not sufficient. Thus, reduction in the temperature of the incubation of cells with EGF from 37°C to 4°C abolished the loss of EGF-dependent phosphorylation of the 170K- and 150K-dalton membrane proteins. When EGF was removed from the medium the EGF-dependent phosphorylation of the 170K- and l50K-dalton proteins was quickly replenished; by 3 hr one-half of the “down regulated” phosphorylation was restored. All EGF-dependent phosphorylating capacity of the 170K- and l50K-dalton protein bands returned by 6 hr after removal of the growth factor. The loss of EGF-dependent phosphorylation of the 170K- and I50K-dalton proteins occurred at physiological EGF concentrations (0.25–25 ng/ml) that span the concentration range which is mitogenic for NRK cells. Exposure of confluent nondividing NRK cells to 1 ng/ml EGF, followed by incubation for 5 hr at 37°C. led to a 50% reduction in the EGF-dependent phosphorylation of the 170K- and 150K-dalton proteins. Maximal reduction (~95%) in the EGF-dependent phosphorylation of the 170K- and 150K-dalton proteins was noted with 10 ng/ml EGF for 5 hr. The EGF-induced loss of EGF-dependent phosphorylation was specific: several other growth factors did not produce phosphorylation loss of the 170K-  相似文献   

17.
18.
The analysis of pea rbcS-3A promoter sequence showed that BoxII was necessary for the control of rbcS-3A gene expression by light. GT-1, a DNA-binding protein that interacts with BoxII in vitro, is a good candidate for being a light-modulated molecular switch controlling gene expression. However, the relationship between GT-1 activity and light-responsive gene activation still remains hypothetical. Because no marked de novo synthesis was detected after light treatment, light may induce post-translational modifications of GT-1 such as phosphorylation or dephosphorylation. Here, we show that recombinant GT-1 (hGT-1) of Arabidopsis can be phosphorylated by various mammalian kinase activities in vitro. Whereas phosphorylation by casein kinase II had no apparent effect on hGT-1 DNA binding, phosphorylation by calcium/calmodulin kinase II (CaMKII) increased the binding activity 10–20-fold. Mass spectrometry analyses of the phosphorylated hGT-1 showed that amongst the 6 potential phosphorylatable residues (T86, T133, S175, T179, S198 and T278), only T133 and S198 are heavily modified. Analyses of mutants altered at T86, T133, S175, T179, S198 and T278 demonstrated that phosphorylation of T133 can account for most of the stimulation of DNA-binding activity by CaMKII, indicating that this residue plays an important role in hGT-1/BoxII interaction. We further showed that nuclear GT-1 DNA-binding activity to BoxII was reduced by treatment with calf intestine phosphatase in extracts prepared from light-grown plants but not from etiolated plants. Taken together, our results suggest that GT-1 may act as a molecular switch modulated by calcium-dependent phosphorylation and dephosphorylation in response to light signals.  相似文献   

19.
Calcium/calmodulin-dependent protein kinase II (CaMPK-II) is a key regulatory enzyme in living cells. Modulation of its activity, therefore, could have a major impact on many cellular processes. We found that Zn(2+) has multiple functional effects on CaMPK-II. Zn(2+) generated a Ca(2+)/CaM-independent activity that correlated with the autophosphorylation of Thr(286), inhibited Ca(2+)/CaM binding that correlated with the autophosphorylation of Thr(306), and inhibited CaMPK-II activity at high concentrations that correlated with the autophosphorylation of Ser(279). The relative level of autophosphorylation of these three sites was dependent on the concentration of zinc used. The autophosphorylation of at least these three sites, together with Zn(2+) binding, generated an increased mobility form of CaMPK-II on sodium dodecyl sulfate gels. Overall, autophosphorylation induced by Zn(2+) converts CaMPK-II into a different form than the binding of Ca(2+)/CaM. In certain nerve terminals, where Zn(2+) has been shown to play a neuromodulatory role and is present in high concentrations, Zn(2+) may turn CaMPK-II into a form that would be unable to respond to calcium signals.  相似文献   

20.
Li Y  Li M  Xing G  Hu Z  Wang Q  Dong C  Wei H  Fan G  Chen J  Yang X  Zhao S  Chen H  Guan K  Wu C  Zhang C  He F 《The Journal of biological chemistry》2000,275(48):37443-37447
Hepatopoietin (HPO) is a novel human hepatotrophic growth factor, which specifically stimulates proliferation of cultured primary hepatocytes in vitro and liver regeneration after liver partial hepatectomy in vivo. Recently, the identification of the mitogenic effect of HPO on hepatoma cell lines and the existence of HPO-specific receptors indicate that HPO acts via its specific cell surface receptor. However, the molecular mechanism of HPO action is not fully elucidated. In this report, we examined the signal transduction events induced by HPO in hepatoma cell line (HepG2). Our results demonstrated that HPO induces phosphorylation of mitogen-activated protein kinase kinase and mitogen-activated protein kinase (MAPK) in a rapid and transient manner. HPO stimulates tyrosine phosphorylation of epidermal growth factor receptor (EGFR). Furthermore, we observed that both MAPK activation and the mitogenic effect of HPO on HepG2 cells were completely blocked by AG1478, a specific inhibitor of EGFR tyrosine kinase activity. However, the effects of HPO were not antagonized by an EGFR-blocking antibody, mAb528, which blocks the interaction between epidermal growth factor and EGFR, indicating that stimulation of tyrosine phosphorylation of EGFR by HPO was not mediated by epidermal growth factor. In contrast, genistein, a general tyrosine kinase inhibitor, significantly attenuated the tyrosine phosphorylation of EGFR in response to HPO. In conclusion, our results suggest that tyrosine phosphorylation of EGFR may play a critical role in MAPK activation and mitogenic stimulation by HPO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号