首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypothyroidism in humans provokes various neuropsychiatric disorders, movement, and cognitive abnormalities that may greatly depend on the mitochondrial energy metabolism. Brain cells contain at least two major populations of mitochondria that include the non-synaptic mitochondria, which originate from neuronal and glial cell bodies (CM), and the synaptic (SM) mitochondria, which primarily originate from the nerve terminals. Several parameters of oxidative stress and other parameters in SM and CM fractions of hippocampus of adult rats were compared among euthyroid (control), hypothyroid (methimazol-treated), and thyroxine (T4)-treated hypothyroid states. nNOS translocation to CM was observed with concomitant increase of mtNOS??s activity in hypothyroid rats. In parallel, oxidation of cytochrome c oxidase and production of peroxides with substrates of complex I (glutamate?+?malate) were enhanced in CM, whereas the activity of aconitase and mitochondrial membrane potential (????m) were decreased. Furthermore, the elevation of mitochondrial hexokinase activity in CM was also found. No differences in these parameters between control and hypothyroid animals were observed in SM. However, in contrast to CM, hypothyroidism increases the level of pro-apoptotic K-Ras and Bad in SM. Our results suggest that hypothyroidism induces moderate and reversible oxidative/nitrosative stress in hippocampal CM, leading to the compensatory elevation of hexokinase activity and aerobic glycolysis. Such adaptive activation in glycolytic metabolism does not occur in SM, suggesting that synaptic mitochondria differ in their sensitivity to the energetic disturbance in hypothyroid conditions.  相似文献   

2.
About 50% of the SV40 DNA in the process of replication (sv40(ri) dna) completed replication in lysates of infected BSC-1 cells by conversion to covalently closed, superhelical SV40 DNA (SV40(I) DNA). Fractionation of the lysate into nuclear and cytoplasmic components blocked 99% of the synthesis of SV40(I) DNA in the purified nuclei. The reconstituted system, made by adding back the cytoplasmic fraction before incubation at 30 degrees, completely restored the in vitro level of SV40(I) DNA synthesis. Preliminary characterization of the activity found in the cytoplasmic fraction suggested it was a soluble, heat-labile protein (or proteins) with a minimum molecular weight of about 30,000 and an active sulfhydryl group. The activity was present in both infected and uninfected monkey cells, and at a lower level in mouse, hamster, and human cell lines. Neither serum starvation nor cycloheximide treatment of cells diminished the activity in the cytoplasmic fraction. Purified cytoplasmic DNA polymerase from KB cells did not substitute for the cytoplasmic fraction which was required for elongation of newly synthesized DNA strands. In the absence of the cytoplasmic fraction, conversion of 4 S DNA into longer strands was inhibited, and SV40(RI) DNA appeared to be broken specifically at the replication forks.  相似文献   

3.
4.
Dendritic cells located at the body surfaces, e.g. skin, respiratory and gastrointestinal tract, play an essential role in the induction of adaptive immune responses to pathogens and inert antigens present at these surfaces. In the respiratory tract, multiple subsets of dendritic cells (RDC) have been identified in both the normal and inflamed lungs. While the importance of RDC in antigen transport from the inflamed or infected respiratory tract to the lymph nodes draining this site is well recognized, the contribution of individual RDC subsets to this process and the precise role of migrant RDC within the lymph nodes in antigen presentation to T cells is not clear. In this report, we demonstrate that two distinct subsets of migrant RDC - exhibiting the CD103+ and CD11bhi phenotype, respectively - are the primary DC presenting antigen to naïve CD4+ and CD8+ T lymphocytes in the draining nodes in response to respiratory influenza virus infection. Furthermore, the migrant CD103+ RDC subset preferentially drives efficient proliferation and differentiation of naive CD8+ T cells responding to infection into effector cells, and only the CD103+ RDC subset can present to naïve CD8+ T cells non-infectious viral vaccine introduced into the respiratory tract. These results identify CD103+ and CD11bhi RDC as critical regulators of the adaptive immune response to respiratory tract infection and potential targets in the design of mucosal vaccines.  相似文献   

5.
Since adult neurogenesis became a widely accepted phenomenon, much effort has been put in trying to understand the mechanisms involved in its regulation. In addition, the pathophysiology of several neuropsychiatric disorders, such as depression, has been associated with imbalances in adult hippocampal neurogenesis. These imbalances may ultimately reflect alterations at the cell cycle level, as a common mechanism through which intrinsic and extrinsic stimuli interact with the neurogenic niche properties. Thus, the comprehension of these regulatory mechanisms has become of major importance to disclose novel therapeutic targets. In this review, we first present a comprehensive view on the cell cycle components and mechanisms that were identified in the context of the homeostatic adult hippocampal neurogenic niche. Then, we focus on recent work regarding the cell cycle changes and signaling pathways that are responsible for the neurogenesis imbalances observed in neuropathological conditions, with a particular emphasis on depression.  相似文献   

6.
Vegetative cells carrying the new temperature-sensitive mutation cdc40 arrest at the restrictive temperature with a medial nuclear division phenotype. DNA replication is observed under these conditions, but most cells remain sensitive to hydroxyurea and do not complete the ongoing cell cycle if the drug is present during release from the temperature block. It is suggested that the cdc40 lesion affects an essential function in DNA synthesis. Normal meiosis is observed at the permissive temperature in cdc40 homozygotes. At the restrictive temperature, a full round of premeiotic DNA replication is observed, but neither commitment to recombination nor later meiotic events occur. Meiotic cells that are already committed to the recombination process at the permissive temperature do not complete it if transferred to the restrictive temperature before recombination is realized. These temperature shift-up experiments demonstrate that the CDC40 function is required for the completion of recombination events, as well as for the earlier stage of recombination commitment. Temperature shift-down experiments with cdc40 homozygotes suggest that meiotic segregation depends on the final events of recombination rather than on commitment to recombination.  相似文献   

7.

In anti-cancer treatment, deoxynucleoside analogues are widely used in combination chemotherapy. Improvement can be achieved by rational design of novel combinations with cell cycle inhibitors. These compounds inhibit protein kinases, preventing the cell cycle from continuing when affected by deoxynucleoside analogs. The efficacy is dependent on the site of cell cycle inhibition, whether multiple cyclin-dependent kinases are inhibited and whether the inhibitors should be given before or after the deoxynucleoside analogs. The action of cell cycle inhibition in vivo may be limited by unfavorable pharmacokinetics. Preclinical and clinical studies will be discussed, aiming to design improved future strategies.  相似文献   

8.
Cytoplasmic viral RNA and DNA are recognized by RIG-I-like receptors and DNA sensors that include DAI, IFI16, DDX41, and cGAS. The RNA and DNA sensors evoke innate immune responses through the IPS-1 and STING adaptors. IPS-1 and STING activate TBK1 kinase. TBK1 is phosphorylated in its activation loop, leading to IRF3/7 activation and Type I interferon (IFN) production. IPS-1 and STING localize to the mitochondria and endoplasmic reticulum, respectively, whereas it is unclear where phosphorylated TBK1 is localized in response to cytoplasmic viral DNA. Here, we investigated phospho-TBK1 (p-TBK1) subcellular localization using a p-TBK1-specific antibody. Stimulation with vertebrate DNA by transfection increased p-TBK1 levels. Interestingly, stimulation-induced p-TBK1 exhibited mitochondrial localization in HeLa and HepG2 cells and colocalized with mitochondrial IPS-1 and MFN-1. Hepatitis B virus DNA stimulation or herpes simplex virus type-1 infection also induced p-TBK1 mitochondrial localization in HeLa cells, indicating that cytoplasmic viral DNA induces p-TBK1 mitochondrial localization in HeLa cells. In contrast, p-TBK1 did not show mitochondrial localization in RAW264.7, L929, or T-23 cells, and most of p-TBK1 colocalized with STING in response to cytoplasmic DNA in those mammalian cells, indicating cell type-specific localization of p-TBK1 in response to cytoplasmic viral DNA. A previous knockout study showed that mouse IPS-1 was dispensable for Type I IFN production in response to cytoplasmic DNA. However, we found that knockdown of IPS-1 markedly reduced p-TBK1 levels in HeLa cells. Taken together, our data elucidated the cell type-specific subcellular localization of p-TBK1 and a cell type-specific role of IPS-1 in TBK1 activation in response to cytoplasmic viral DNA.  相似文献   

9.
10.
Cyclic AMP is a second messenger for various hormones that inhibits cell multiplication and DNA synthesis in cultured astrocytes. We examined the effects of increasing intracellular cyclic AMP on the catalytic (cdks) and regulatory (cyclins and ckis) components of cyclin-dependent protein kinases, which regulate progression of the cell cycle before completion of DNA synthesis, in primary cultured astrocytes and in an astrocytic cell line C.LT.T.1.1. The amount of cdk4 changed little during the cell cycle and was not affected by cyclic AMP. There was little cdk1 and cdk2 in quiescent cells, and their expression increased during the G1-S phases. Cyclic AMP strongly inhibited cdk1 and cdk2 expression. Transforming growth factor beta also inhibited cdk1 expression in primary astrocytes. Cyclic AMP did not affect the two ckis p27KIP1 and p21CIP1. There was little cyclin D1 in quiescent cells, but it increased during the G1 phase and was reduced by cyclic AMP. Cyclin E increased during the G1-S phases and was not affected by cyclic AMP in primary astrocytes. The amount of cyclin A was low in quiescent cells and increased during the G1-S phases. Expression of its mRNA and protein was inhibited by cyclic AMP. The protein kinase activities associated with complexes of cyclins and cdks were increased by growth factors and prevented by cyclic AMP. We conclude that cyclic AMP inhibits progression of the cell cycle in astrocytes at least by preventing the expression of the regulatory subunits, cyclins D1 and A, and catalytic subunits, cdk1 and cdk2, of cyclin-regulated protein kinases. Key Words: Cyclin-dependent protein kinases-Glial cells-Cyclic AMP.  相似文献   

11.
12.
This study represents the first report on chloroplast protein synthesis during the synchronous cell growth of a chromophytic (chlorophyll a,c) plant. When the unicellular alga Olisthodiscus luteus is maintained on a 12-hour light:12-hour dark cycle, cell and chloroplast number double every 24 hours. A temporal separation between these two events occurs. Measurements of chloroplast and total cellular protein values suggest that polypeptide synthesis occurs mainly in the light portion of the cell cycle, and pulse chase studies demonstrate that chloroplast proteins made in the light are not degraded in the dark. Data support the following conclusions: (a) a similar complement of chloroplast DNA coded proteins is made at all phases of the light portion of the cell cycle, and (b) chloroplast protein synthesis is a light rather than a cell cycle mediated response.  相似文献   

13.
Prostatic adenocarcinomas are dependent on androgen receptor (AR) signaling for growth and progression, in part through the ability of AR to induce G1-S phase cell cycle transition. Hormonal therapies that inhibit AR activity are the first line of intervention for disseminated disease, and are initially quite effective; however, recurrent, incurable tumors ultimately arise with restored AR function. Given the importance of AR in governing the potentiation of this tumor type, there has been a dedicated interest in dissecting the mechanisms by which AR promotes prostate cancer proliferation and survival. Recent studies have challenged the utility of manipulating AR activity to enhance cell death in combination with genotoxic insult. Herein, the role of AR in controlling cell cycle progression and paradoxical roles of AR in survival signals are considered, as are the potential implications of these findings for chemotherapeutic response. Although there is much to be resolved, the present data suggest that knowledge of AR action in promoting cellular proliferation can be utilized for the design of coordinate strategies that maximize cell death in response to cytotoxic chemotherapeutics.  相似文献   

14.
During the life cycle of Chlorella vulgaris Beijerinck var vulgaris fa. vulgaris growing synchronously, the specific activity of ornithine decarboxylase peaked at the 2nd hour of the cycle, whereas that of arginine decarboxylase changed only slightly, increasing towards the end of the cycle. The endogenous level of putrescine and spermidine on a per cell basis increased gradually up to the 8th hour of the cycle, and declined thereafter. Thus, the peak of ornithine decarboxylase activity and the polyamine increase preceded both DNA replication (which took place between the 6th and 8th hours of the cycle) and autospore release (which started at the 8th hour). A 2-fold increase in the light intensity caused doubling of the DNA content, resulting in doubling of the number of autospores per mother cell. It also brought about a 2-fold increase in the specific activity of ornithine decarboxylase and polyamine content, the peaks being at the same hour of the cycle under high and low light intensities. The increase in cell number and polyamine content in a Chlorella culture grown under high light intensity was inhibited by α-difluoromethyl ornithine, a specific inhibitor of ornithine decarboxylase, this inhibition being partially reversed by putrescine.

It is suggested that in C. vulgaris the sequence of events which relates polyamine biosynthesis to cell division is as follows: increased ornithine decarboxylase activity, accumulation of polyamines, DNA replication, and autospore release.

  相似文献   

15.
This study explores the idea that an observer is sensitive to differences in the static traces of drawings that are due to differences in motor origin. In particular, our aim was to test if an observer is able to discriminate between drawings made by a robot and by a human in the case where the drawings contain salient kinematic cues for discrimination and in the case where the drawings only contain more subtle kinematic cues. We hypothesized that participants would be able to correctly attribute the drawing to a human or a robot origin when salient kinematic cues are present. In addition, our study shows that observers are also able to detect the producer behind the drawings in the absence of these salient kinematic cues. The design was such that in the absence of salient kinematic cues, the drawings are visually very similar, i.e. only differing in subtle kinematic differences. Observers thus had to rely on these subtle kinematic differences in the line trajectories between drawings. However, not only motor origin (human versus robot) but also motor style (natural versus mechanic) plays a role in attributing a drawing to the correct producer, because participants scored less high when the human hand draws in a relatively mechanical way. Overall, this study suggests that observers are sensitive to subtle kinematic differences between visually similar marks in drawings that have a different motor origin. We offer some possible interpretations inspired by the idea of “motor resonance”.  相似文献   

16.
Rho GTPases including Rho, Rac and Cdc42 are involved in cell morphogenesis by inducing specific types of actin cytoskeleton and alignment and stabilization of microtubules. Previous studies suggest that they also regulate cell cycle progression; Rho, Rac and Cdc42 regulate the G1-S progression and Rho controls cytokinesis. However, a role of Rho GTPases in nuclear division has not been definitely shown. We have recently found that Cdc42 and its downstream effector mDia3 are involved in bi-orientation and stabilization of spindle microtubules attachment to kinetochores and regulate chromosome alignment and segregation. Here, we discuss how this is coordinated with other events in mitosis, particularly, with the action of Rho in cytokinesis and how attachment of microtubules to kinetochores is achieved and stabilized. We also discuss redundancy of Cdc42 and Cdc42-related GTPase(s) and potential mechanisms of chromosome instability in cancer  相似文献   

17.
The aim of this study was to evaluate the possible carcinogenic potential of residual DNA derived from immortalized and possibly tumorigenic cell lines due to activated oncogenic sequences (oncogenes). These cell lines have been used for the production of biologicals, i.e. monoclonal antibodies, lymphokines and vaccines. The authors used hybridoma DNA as a first model. For this reason experiments in two species were performed, namely in 3–4 week-old female Balb/c mice and newborn Riv:TOX rats. Doses of 250 μg DNA, derived from Balb/c hybridoma cells, were injected subcutaneously (s.c.) in 200 mice. These mice also received a s.c. injection of the solvent only (TE buffer) at another site of the back skin (negative control for local tumour development). An additional group of 50 mice was treated intraperitoneally (i.p.) with the solvent only to serve as a negative control group for possible systemic tumorigenic effects. Doses of 5 μg plasmid pPy1 DNA, containing the entire Polyoma virus genome, served as positive control and were injected s.c. and i.p. in 20 and 50 mice, respectively. Doses of 50 μg hybridoma DNA of 5 μg pPy1 DNA were injected s.c. in rats too, using nine animals per group. During the experiment, animals were observed weekly, especially for the occurrence of subcutaneous tumours at the injection sites. The mouse study was terminated after more than 2 years, the rat study after 1 year. Gross necropsy was performed on all animals and histopathological examination of grossly suspected neoplastic lesions was performed.In the mouse experiment, tumour development at the s.c. injection site of the DNA was observed in one out of 20 animals in the pPy1-treated positive control group (neurofibrosarcoma) and one out of 200 animals in the hybridoma DNA-treated group (haemangioma-like lesion). Tumour development at or near the s.c. injection site of the solvent only was observed in two out of 200 animals.In the rat study none out of nine hybridoma DNA-treated rats developed tumours at the injection site, while three out of nine rats of the positive control group, injected with the pPy1 DNA, showed local tumour development (benign and malignant soft tissue tumours).It is considered that, at the high dose and numbers of animals tested, parenteral administration of hybridoma DNA does not induce local tumour development. Furthermore, no indications were found for systemic carcinogenic potential of the hybridoma DNA used.Based on a worst case approach of our data, the oncogenic risk of 100 pg residual DNA was estimated to be 2×10−9, a value intermediate of the estimations of the WHO (1987) and the Dutch Health Council (1988) 5×10−11and 2×10−7, respectively. Therefore, it is unlikely that the risk of 100 pg of DNA derived from other immortalized cell lines will exceed the level of generally accepted cancer risk of 10−6.  相似文献   

18.
Tolclofos-methyl, iprodione and cyproconazole, among the eleven fungicides tested in vitro, gave consistently strong inhibition against all ten anastomosis groups (AGs) of Rhizoctonia solani. Carboxin, furmecyclox, thiabendazole, fenpropimorph and vinclozolin also inhibited all AGs but with wide variations in toxicity levels (EC90 values). Pencycuron showed strong activity against four AGs but was ineffective against the other six AGs. Generally, R. solani AGs were insensitive to fenarimol and imazalil. Tolclofos-methyl strongly inhibited 23 AG2-1 and 20 AG4 rapeseed/canola R. solani isolates from different locations in Saskatchewan, Alberta and Manitoba. The same isolates were also sensitive to iprodione, cyproconazole and carboxin. All AG4 canola isolates were insensitive to pencycuron (EC90 > 500 mg/l) while AG2-1 isolates showed highly variable levels of sensitivity with EC90s ranging from 0.5 to 220 mg/l. Tolclofos-methyl, applied to Brassica napus (canola) cv. Westar seed at 1 g a.i./kg, provided 75—100 % control of seedling damping-off in pots infested with AG2-1 or AG4 isolates. In parallel experiments, pencycuron (1 g a.i./kg seed) failed to control damping-off by AG4 canola isolates and gave variable disease control against AG2-1 isolates.  相似文献   

19.
《Epigenetics》2013,8(1):54-65
DNA methylation has been viewed as a stable component of the epigenome, which is established during development and fixed thereafter. We show here using nearest neighbor analysis, immunocytochemistry, and high performance capillary electrophoresis that the DNA methylation pattern varies in HeLa cells during a single cell cycle. Immunocytochemical analysis in primary human fibroblasts shows similar variations. The global levels of DNA methylation decreased in G1 and increase during the S phase of the cell cycle. Since there was little change in the DNA methylation levels in repetitive sequences throughout the cell cycle, we examined the DNA methylation pattern of unique sequences using a human CpG island microarray. Hybridization with methylated DNA from G1 and S phase of the cell cycle revealed that 174 CG-containing sequences were differentially methylated between G1 and S. 75% of all the variations in DNA methylation detected in unique sequences represented hypomethylation at G0, with changes occurring in both CpG islands and non-CpG islands. Bisulfite mapping confirmed these changes in methylation in the regions identified by the microarray. This is the first demonstration of a dynamic DNA methylation pattern within a single cell cycle of a mature somatic cell. These data are important for our understanding of the stability of DNA methylation patterns in somatic cells.  相似文献   

20.
C. J. Kolman  N. Sambuughin    E. Bermingham 《Genetics》1996,142(4):1321-1334
High levels of mitochondrial DNA (mtDNA) diversity were determined for Mongolian populations, represented by the Mongol-speaking Khalkha and Dariganga. Although 103 samples were collected across Mongolia, low levels of genetic substructuring were detected, reflecting the nomadic lifestyle and relatively recent ethnic differentiation of Mongolian populations. mtDNA control region I sequence and seven additional mtDNA polymorphisms were assayed to allow extensive comparison with previous human population studies. Based on a comparative analysis, we propose that indigenous populations in east Central Asia represent the closest genetic link between Old and New World populations. Utilizing restriction/deletion polymorphisms, Mongolian populations were found to carry all four New World founding haplogroups as defined by WALLACE and coworkers. The ubiquitous presence of the four New World haplogroups in the Americas but narrow distribution across Asia weakens support for GREENBERG and coworkers' theory of New World colonization via three independent migrations. The statistical and geographic scarcity of New World haplogroups in Asia makes it improbable that the same four haplotypes would be drawn from one geographic region three independent times. Instead, it is likely that founder effects manifest throughout Asia and the Americas are responsible for differences in mtDNA haplotype frequencies observed in these regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号