首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The nucleocapsid protein of Moloney murine leukemia virus (NCp10) is a 56-amino acid protein which contains one zinc finger of the CysX2CysX4HisX4Cys form, a highly conserved motif present in most retroviruses and retroelements. At pH5, NCp10 binds one zinc atom and the complexation induces a folding of the CysX2CysX4HisX4Cys box, similar to that observed for the zinc-binding domains of HIV-1 NC protein. The three-dimensional structure of NCp10 has been determined in aqueous solution by 600 MHz 1H NMR spectroscopy. The proton resonances could be almost completely assigned by means of phase-sensitive double-quantum-filtered COSY, TOCSY and NOESY techniques. NOESY spectra yielded 597 relevant structural constraints, which were used as input for distance geometry calculations with DIANA. Further refinement was performed by minimization with the program AMBER, which was modified by introducing a zinc force field. The solution structure is characterized by a well-defined central zinc finger (rmsd of 0.747±0.209 Å for backbone atoms and 1.709±0.187 Å when all atoms are considered), surrounded by flexible N- and C-terminal domains. The Tyr28, Trp35, Lys37, Lys41 and Lys42 residues, which are essential for activity, lie on the same face of the zinc finger, forming a bulge structure probably involved in viral RNA binding. The significance of these structural characteristics for the various biological functions of the protein is discussed, taking into account the results obtained with various mutants.  相似文献   

2.
C H Park  A Tulinsky 《Biochemistry》1986,25(14):3977-3982
The three-dimensional structure of bovine prothrombin fragment 1 has been solved at 2.8-A resolution. The electron density clearly reveals four disulfide bridges along with more than 80% of the side chains completely in density, which correspond faithfully to the kringle sequence, its preceding 30 residues, and the dodecapeptide carboxy terminal; the polysaccharide and the first 35 residues of the amino terminal of fragment 1 are disordered or about 40% of the structure. The folding of the kringle sequence is based upon close disulfide van der Waals contacts between Cys-87-Cys-127 and Cys-115-Cys-139 (4.1 A between midpoints of the bridges), two antiparallel strands of highly conserved (113-118, 124-129) beta-structure, and the stacking of some conserved aromatic residues, all near the center of the folded structure. Moreover, the overall folding appears to be duplicated as a pair of stacked duplex loops with an antiparallel open loop. The overall shape of the kringle structure approximates an eccentric oblate ellipsoid of dimensions 11 X 28 X 30 A. The residues immediately preceding the kringle are dominated by alpha-helical structure (Phe-41-Cys-48; Leu-56-Glu-63). Residues Phe-41-Trp-42 and Tyr-45, which are conserved in factor IX, factor X, protein C, and protein Z, form another aromatic stacked cluster while the Cys-48-Cys-61 disulfide loop corresponds to the well-known alpha/beta structural unit. The dodecapeptide carboxy-terminal interkringle chain extends along the periphery of the kringle in its plane and forms a beta-structure with the kringle-closing Ser-140-Val-143 tetrapeptide.  相似文献   

3.
Nipah and its close relative Hendra are highly pathogenic zoonotic viruses, storing their ssRNA genome in a helical nucleocapsid assembly formed by the N protein, a major viral immunogen. Here, we report the first cryoEM structure for a Henipavirus RNA-bound nucleocapsid assembly, at 3.5 Å resolution. The helical assembly is stabilised by previously undefined N- and C-terminal segments, contributing to subunit-subunit interactions. RNA is wrapped around the nucleocapsid protein assembly with a periodicity of six nucleotides per protomer, in the “3-bases-in, 3-bases-out” conformation, with protein plasticity enabling non-sequence specific interactions. The structure reveals commonalities in RNA binding pockets and in the conformation of bound RNA, not only with members of the Paramyxoviridae family, but also with the evolutionarily distant Filoviridae Ebola virus. Significant structural differences with other Paramyxoviridae members are also observed, particularly in the position and length of the exposed α-helix, residues 123–139, which may serve as a valuable epitope for surveillance and diagnostics.  相似文献   

4.
Fine structure of Sendai virus nucleocapsid   总被引:1,自引:0,他引:1  
  相似文献   

5.
The three-dimensional structure of the regular surface layer of Bacillus sphaericus P-1 (T-layer) was determined to a resolution of ca. 2.5 nm by electron microscopy and image analysis. The T-layer has P4 symmetry, a lattice constant of 13 +/- 0.2 nm, and a thickness of ca. 8 nm. The reconstruction revealed three distinct domains: a major, a minor, and an arm domain. In the z-direction, the domains are arranged in two planes creating two different surface reliefs.  相似文献   

6.
Antigenic mutants of poliovirus (Sabin strain, serotype 1) were isolated by the resistance of the virus to anti-Sabin neutralizing monoclonal antibodies. The amino acid replacements within the capsid protein sequence causing the altered antigenicity were identified for each of 63 isolates. The mutations cluster into distinct nonoverlapping peptide segments that group into three general immunological phenotypes on the basis of cross-neutralization analyses with 15 neutralizing anti-Sabin monoclonal antibodies. Location of the mutated amino acid residues within the three-dimensional structure of the virion indicates that the majority of these amino acid residues are highly exposed and located within prominent structural features of the viral surface. Those mutated amino acid residues that are less accessible to antibody interaction are often involved in hydrogen bonds or salt bridges that would stabilize the local tertiary structure of the antigenic site. The interactions of the peptide segments that form these neutralizing sites suggest specific models for the generation of neutralization-resistant variants and for the interaction between the viral surface and antibody.  相似文献   

7.
8.
Gamma-secretase belongs to an atypical class of aspartic proteases that hydrolyzes peptide bonds within the transmembrane domain of substrates, including amyloid-beta precursor protein and Notch. gamma-Secretase is comprised of presenilin, nicastrin, APH-1, and PEN-2 which form a large multimeric membrane protein complex, the three-dimensional structure of which is unknown. To gain insight into the structure of this complex enzyme, we purified functional gamma-secretase complex reconstituted in Sf9 cells and analyzed it using negative stain electron microscopy and 3D reconstruction techniques. Analysis of 2341 negatively stained particle images resulted in the three-dimensional representation of gamma-secretase at a resolution of 48 angstroms. The structure occupies a volume of 560 x 320 x 240 angstroms and resembles a flat heart comprised of two oppositely faced, dimpled domains. A low density space containing multiple pores resides between the domains. Some of the dimples in the putative transmembrane region may house the catalytic site. The large dimensions are consistent with the observation that gamma-secretase activity resides within a high molecular weight complex.  相似文献   

9.
The anaphase-promoting complex (APC) is a cell cycle-regulated ubiquitin-protein ligase, composed of at least 11 subunits, that controls progression through mitosis and G1. Using cryo-electron microscopy and angular reconstitution, we have obtained a three-dimensional model of the human APC at a resolution of 24 A. The APC has a complex asymmetric structure 140 A x 140 A x 135 A in size, in which an outer protein wall surrounds a large inner cavity. We discuss the possibility that this cavity represents a reaction chamber in which ubiquitination reactions take place, analogous to the inner cavities formed by other protein machines such as the 26S proteasome and chaperone complexes. This cage hypothesis could help to explain the great subunit complexity of the APC.  相似文献   

10.
Transforming growth factor-(TGF-) is known to induce -smooth muscle actin (-SMA) infibroblasts and is supposed to play a role in myofibroblastdifferentiation and tumor desmoplasia. Our objective was to elucidatethe impact of TGF-1 on -SMA expression in fibroblasts in athree-dimensional (3-D) vs. two-dimensional (2-D) environment. Inmonolayer culture, all fibroblast cultures responded in a similarfashion to TGF-1 with regard to -SMA expression. In fibroblastspheroids, -SMA expression was reduced and induction by TGF-1 washighly variable. This difference correlated with a differentialregulation in the TGF- receptor (TGFR) expression, in particularwith a reduction in TGF-RII in part of the fibroblast types. Ourdata indicate that 1) sensitivity to TGF-1-induced -SMA expression in a 3-D environment is fibroblast-type specific, 2) fibroblast type-independent regulatory mechanisms, suchas a general reduction/loss in TGF-RIII, contribute to an altered TGFR expression profile in spheroid compared with monolayer culture, and 3) fibroblast type-specific alterations in TGFR typesI and II determine the sensitivity to TGF-1-induced -SMAexpression in the 3-D setting. We suggest that fibroblasts that can beinduced by TGF-1 to produce -SMA in spheroid culture reflect a"premyofibroblastic" phenotype.

  相似文献   

11.
Three-dimensional structure of RK-1: a novel alpha-defensin peptide   总被引:3,自引:0,他引:3  
NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of RK-1, an antimicrobial peptide from rabbit kidney recently discovered from homology screening based on the distinctive physicochemical properties of the corticostatins/defensins. RK-1 consists of 32 residues, including six cysteines arranged into three disulfide bonds. It exhibits antimicrobial activity against Escherichia coli and activates Ca(2+) channels in vitro. Through its physicochemical similarity, identical cysteine spacing, and linkage to the corticostatins/defensins, it was presumed to be a member of this family. However, RK-1 lacks both a large number of arginines in the primary sequence and a high overall positive charge, which are characteristic of this family of peptides. The three-dimensional solution structure, determined by NMR, consists of a triple-stranded antiparallel beta-sheet and a series of turns and is similar to the known structures of other alpha-defensins. This has enabled the definitive classification of RK-1 as a member of this family of antimicrobial peptides. Ultracentrifuge measurements confirmed that like rabbit neutrophil defensins, RK-1 is monomeric in solution, in contrast to human neutrophil defensins, which are dimeric.  相似文献   

12.
While the structures of nearly every HIV-1 protein are known in atomic detail from X-ray crystallography and NMR spectroscopy, many questions remain about how the individual proteins are arranged in the mature infectious viral particle. Here, we report the three-dimensional structures of individual HIV-1 virus-like particles (VLPs) as obtained by electron cryotomography. These reconstructions revealed that while the structures and positions of the conical cores within each VLP were unique, they exhibited several surprisingly consistent features, including similarities in the size and shape of the wide end of the capsid (the "base"), uniform positioning of the base and other regions of the capsid 11nm away from the envelope/MA layer, a cone angle that typically varied from 24 degrees to 18 degrees around the long axis of the cone, and an internal density (presumably part of the NC/RNA complex) cupped within the base. Multiple and nested capsids were observed. These results support the fullerene cone model for the viral capsid, indicate that viral maturation involves a free re-organization of the capsid shell rather than a continuous condensation, imply that capsid assembly is both concentration-driven and template-driven, suggest that specific interactions exist between the capsid and the adjacent envelope/MA and NC/RNA layers, and show that a particular capsid shape is favored strongly in-vivo.  相似文献   

13.
14.
Brain I(A) and cardiac I(to) currents arise from complexes containing Kv4 voltage-gated potassium channels and cytoplasmic calcium-sensor proteins (KChIPs). Here, we present X-ray crystallographic and small-angle X-ray scattering data that show that the KChIP1-Kv4.3 N-terminal cytoplasmic domain complex is a cross-shaped octamer bearing two principal interaction sites. Site 1 comprises interactions between a unique Kv4 channel N-terminal hydrophobic segment and a hydrophobic pocket formed by displacement of the KChIP H10 helix. Site 2 comprises interactions between a T1 assembly domain loop and the KChIP H2 helix. Functional and biochemical studies indicate that site 1 influences channel trafficking, whereas site 2 affects channel gating, and that calcium binding is intimately linked to KChIP folding and complex formation. Together, the data resolve how Kv4 channels and KChIPs interact and provide a framework for understanding how KChIPs modulate Kv4 function.  相似文献   

15.
16.
Three-dimensional structure of rotavirus   总被引:40,自引:0,他引:40  
  相似文献   

17.
18.
BACKGROUND: The aim of the study was to compare the cross-reactivity of macaque anti-CeHV1 antibodies with type 1 and type 2 human herpes simplex viruses (HSV1 and HSV2). METHODS: We studied the serum of 344 animals which had been tested either positive (n = 39) or negative (n = 305) for the presence of CeHV1 antibodies by expert laboratories. Macaque serums were studied by means of two ELISA: one based on HSV1 antigen-coated wells, the other on polystyrene beads coated with HSV1 and HSV2 antigens in approximately equal proportions. RESULTS: In the serum of two animals originating from Vietnam, we found anti-CeHV1 antibodies cross-reacting with HSV2 but not with HSV1 antigens. For the serum with the highest titer, inhibition by soluble antigens confirmed the high affinity of the antibodies for HSV2 antigens. CONCLUSIONS: Tests using HSV1 and HSV2 in a combined way are better suited to macaque screening than tests using only HSV1 antigens.  相似文献   

19.
20.
The capsid proteins of papillomavirus self-assemble to form empty capsids or virus-like particles that appear quite similar to naturally occurring virions by conventional electron microscopy. To characterize such virus-like particles more fully, cryoelectron microscopy and image analysis techniques were used to generate three-dimensional reconstructions of capsids produced by vaccinia virus recombinants (V capsids) that expressed human papillomavirus type 1 L1 protein only or both L1 and L2 proteins. All V capsids had 72 pentameric capsomers arranged on a T = 7 icosahedral lattice. Each particle (approximately 60 nm in diameter) consisted of an approximately 2-nm-thick shell of protein with a radius of 22 nm with capsomers that extend approximately 6 nm from the shell. At a resolution of 3.5 nm, both V capsid structures appear identical to the capsid structure of native human papillomavirus type 1 (T. S. Baker, W. W. Newcomb, N. H. Olson, L. M. Cowsert, C. Olson, and J. C. Brown, Biophys. J. 60:1445-1456, 1991), thus implying that expressed and native capsids are structurally equivalent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号