首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
3.
Chemokine receptor expression in human endometrium   总被引:11,自引:0,他引:11  
Chemokines play a role in endometrial physiology and pathology and may affect endometrial receptivity and menstrual shedding. Chemokines exert their effect by binding to their relevant receptors, the expression levels of which may modulate their action. In the present study, we examined the expression of chemokine receptors CXCR1 and CXCR2 (receptors for interleukin-8) and CCR5 (receptor for RANTES [regulated-on-activation, normal-T-cell-expressed and -secreted], macrophage inflammatory protein [MIP]-1alpha, and MIP-1beta) in human endometrium. Human endometria (n = 35) were grouped according to the menstrual cycle phase and examined by immunohistochemistry for CXCR1, CXCR2, and CCR5. In both epithelial and stromal cells, CXCR1 and CXCR2 immunoreactivity was detected. Staining was most prominent at the apical and basal aspects of epithelial cells. Intense CCR5 immunostaining was observed in epithelial and stromal compartments throughout the menstrual cycle. Epithelial and stromal staining for CXCR1 reached a peak at the midsecretory phase, during which it was significantly higher than the level of staining during the proliferative phase (P < 0.05). Immunostaining for CXCR2 and CCR5 showed no significant variation across the menstrual cycle. Expression of interleukin-8 and RANTES in endometrium, together with the presence of their receptors, suggests that autocrine and paracrine interactions involving these chemokines may participate in endometrial physiology.  相似文献   

4.
The specific activity of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase was measured in human endometrial tissue obtained from ovulatory and anovulatory women. Employing PGE2 as substrate, the specific activity of this enzyme was found to be highest in endometrial tissue during the secretory phase of the cycle (ovarian cycle days 15–25) and lowest in menstrual (days 1–5) and premenstrual (days 26–28) endometrium. The specific activity of prostaglandin dehydrogenase in endometrium of anovulatory women was low, being similar to that found in proliferative endometrium (days 6–14) of ovulatory women. Prostaglandin dehydrogenase activity was found in the cytosolic fraction prepared from endometrial tissue, and was found principally in the glandular epithelium following separation of endometrial glands and stromal cells.  相似文献   

5.
Matrix metalloproteinases (MMPs) are zinc-requiring enzymes that can degrade components of the extracellular matrix and that are implicated in tissue remodeling. Their role in the onset of menstruation in vivo has been proven; however, the expression and functions of MMPs and tissue inhibitors of metalloproteinases (TIMPs) in vascular structures are poorly understood. We determined by immunocytochemistry, using characterized monoclonal antibodies, the distribution of MMPs and of their inhibitors TIMP-1 and TIMP-2 in the endometrium during the menstrual cycle. MMP-1, MMP-2, MMP-3, MMP-9, TIMP-1, and TIMP-2 had differing distributions and patterns of expression. In addition to the localization of MMP-9 in the epithelium and of MMP-2, MMP-3, and MMP-1 in the stromal tissue, these MMPs were detected in the vascular structures. MMP-2 (72-kDa gelatinase) and tissue inhibitors TIMP-1 and TIMP-2 were detectable in vessels throughout the cycle. In contrast, MMP-3 (stromelysin-1) was detected only in late-secretory and menstrual endometrial vessels, while MMP-9 (92-kDa gelatinase) was detected in spiral arteries during the secretory phase and in vascular structures during the midfollicular and menstrual phases. The expression of MMP-2 and MMP-9 in endometrial vessels during the proliferative and secretory periods suggests their relationship to vascular growth and angiogenesis. The pronounced expression of MMP-3 (stromelysin-1) in the vessels situated in the superficial endometrial layer during menses suggests that this metalloproteinase initiates damage in the vascular wall during menstrual breakdown. The finding of an intense expression of TIMP-1 and TIMP-2 in the vessels delineating necrotic from non-necrotic areas during menses also suggests that they could limit tissue damage, allowing regeneration of the endometrium after menses. These data indicate that, in addition to expression in epithelial cells and stromal tissue, MMPs are expressed in endometrial vascular cells in a cycle-specific pattern, consistent with regulation by steroid hormones and with specific roles in the vascular remodeling processes occurring in the endometrium during the cycle.  相似文献   

6.
7.
8.
Endometrium is the inner lining of the uterus which is composed of epithelial and stromal tissue compartments enclosed by the two smooth muscle layers of the myometrium. In women, much of the endometrium is shed and regenerated each month during the menstrual cycle. Endometrial regeneration also occurs after parturition. The cellular mechanisms that regulate endometrial regeneration are still poorly understood. Using genetic fate-mapping in the mouse, we found that the epithelial compartment of the endometrium maintains its epithelial identity during the estrous cycle and postpartum regeneration. However, whereas the stromal compartment maintains its identity during homeostatic cycling, after parturition a subset of stromal cells differentiates into epithelium that is subsequently maintained. These findings identify potential progenitor cells within the endometrial stromal compartment that produce long-term epithelial tissue during postpartum endometrial regeneration.  相似文献   

9.
Cyclic changes in the matrix metalloproteinase system in the ovary and uterus   总被引:34,自引:0,他引:34  
With each estrous or menstrual cycle, extensive alterations occur in the extracellular matrix and connective tissue of the ovary and uterus. In the ovary, these changes occur during follicular development, breakdown of the follicular wall and extrusion of the oocyte, as well as during the formation and regression of the corpus luteum. In the uterus, the endometrium undergoes dramatic connective tissue turnover associated with tissue breakdown and subsequent regrowth during each menstrual cycle. These changes in the ovarian and uterine extracellular architecture are regulated, in part, by the matrix metalloproteinase (MMP) system. This system is comprised of both a proteolytic component, the MMPs, and associated inhibitors, and it is involved in connective tissue remodeling processes throughout the body. The current review highlights the key features of the MMP system and focuses on the changes in the MMPs and the tissue inhibitors of metalloproteinases during the dynamic remodeling that takes place in the ovary and uterus during the estrous and menstrual cycles.  相似文献   

10.
11.
Matrix metalloproteinases (MMP) have specific spatial and temporal expression patterns in human endometrium and are critical for menstruation. Expression and activation mechanisms for proMMP-2 differ from other MMPs; in many cells proMMP-2 is specifically activated by membrane-type (MT)-MMPs. We examined the expression and localization of proMMP-2, MT1-MMP, and MT2-MMP in human endometrium across the menstrual cycle; and we examined the expression of MT1-MMP and activation of proMMP-2 in cultured endometrial stromal cells and their regulation by progesterone. MMP-2 was immunolocalized in 25 of 32 endometrial samples in all cellular compartments but with greatest intensity in degrading menstrual tissue. MT1-MMP mRNA was present throughout the cycle, and immunoreactive protein was detected in 24 of 32 samples, with the strongest staining in subsets of macrophages, neutrophils, and granular lymphocytes (but not mast cells or eosinophils) during the menstrual, mid-proliferative and mid-secretory phases. Patchy epithelial staining and staining of decidual cells, often periglandular in menstrual tissue, were also seen. MT2-MMP was more widespread than MT1-MMP without apparent cyclical variation and with maximal intensity in glandular epithelium. Cultured endometrial stromal cells released proMMP-2, and progesterone treatment significantly reduced the percentage level of its active (62 kDa) form (22.5 +/- 1.8% vs. 3.0 +/- 1.3%, without and with treatment, respectively, mean +/- SEM, P < 0.0001). This activation was blocked by a specific MMP inhibitor and restored following inhibitor removal. Progesterone also attenuated cell expression of MT1-MMP mRNA. We postulate that MT1-MMP activates proMMP-2 in endometrium, this activity being increased at the end of the cycle when progesterone levels fall, thus contributing to menstruation.  相似文献   

12.
The human uterine endometrium is a tissue in which cell proliferation and differentiation are strictly controlled by sex steroid hormones, and these hormone-controlled cellular events occurring in association with the menstrual cycle of the uterine endometrium should be accompanied by characteristic molecular and metabolic changes. To characterize the menstrual cycle at the molecular level, we analyzed the glycolipids of human uterine endometrium in the proliferative and secretory phases of the menstrual cycle. Neutral glycosphingolipids from uterine endometrium comprised globo-series glycosphingolipids, such as GlcCer, LacCer, Gb3Cer, and Gb4Cer, and the relative concentrations remained constant in the two phases. However, in the case of acidic glycosphingolipids, although the concentrations of sialoglycosphingolipids remained at constant levels in the two phases, sulfatide, I3-SulfoGalCer, dramatically increased from the proliferative to the secretory phase, amounting to 7-17 nmol/g dry weight in the proliferative phase and 115-245 nmol/g dry weight in the secretory phase. Since sulfatide was the only glycolipid that changed in association with the menstrual cycle, it is likely that the sulfotransferase responsible for the synthesis of sulfatide might be induced by sex steroid hormones, estrogen and progesterone, and that sulfatide might play an essential biological role in the secretory phase of the menstrual cycle in the uterine endometrium.  相似文献   

13.
The human endometrium is a dynamic tissue that undergoes cyclic changes under the influence of steroid hormones as well as numerous local paracrine and autocrine factors. Heat shock 70 kDa protein (HSPA5; also known as GRP78/BiP), a molecular chaperone within the endoplasmic reticulum, plays crucial roles in normal cellular processes as well as in stress conditions, in which it is a central regulator for the unfolded protein response (UPR). We hypothesized that HSPA5 expression level is variable throughout the menstrual cycle in human endometrium and that estrogen signaling cross-talks with UPR signaling by interacting with HSPA5. HSPA5 expression throughout the menstrual cycle was evaluated in vivo in normal human endometrium. Using in vitro techniques, we then assessed the bidirectional regulation of HSPA5 and estrogen signaling in human endometrial glandular (Ishikawa) and stromal cells (ESC). HSPA5 immunoreactivity in endometrial glandular and stromal cells was cycle-dependent, and was significantly higher in phases of the menstrual cycle when estradiol (E(2)) levels are known to be the lowest compared with the rest of the cycle (P < 0.001). E(2) did not affect HSPA5 expression after 8-24 h incubation in Ishikawa cells and ESC in vitro. However, tunicamycin-induced HSPA5 expression was significantly lowered in these cells when pretreated with E(2) (P < 0.01 and P < 0.05, respectively). On the other hand, tunicamycin decreased E(2) up-regulated alkaline phosphatase activity (P < 0.001). In conclusion, there is cycle-dependent HSPA5 expression with a possible inverse correlation between HSPA5 expression and E(2) levels in human endometrium. We suggest that estrogen signaling cross-talks with the UPR cascade by interacting with HSPA5, as supported by our in vitro findings.  相似文献   

14.
In order to further identify physiological similarities between 17β-hydroxysteroid dehydrogenase (HSD) in human and monkey endometrium, and to evaluate the role of estradiol-17β (E2) oxidation to estrone (E1) during periimplantation events, 30 rhesus monkeys were studied at different intervals of the nonfertile menstrual cycle (days 8, 12, 15, 18 and 24). Also, five pregnant monkeys provided endometrial tissue on day 24 of the fertile menstrual cycle, near the expected time of implantation. HSD activity in endometrium was low at midfollicular phase (day 8), increased to maximal levels (8-fold) during the periovulatory span (days 12 and 15),and was intermediate in mid to late luteal phase (days 18 and 24) in non-fertile menstrual cycles. In the absence of ovulation, HSD was low throughout. These enzyme data fit with a pattern of daily peripheral serum levels of E2 and progesterone (P) and suggest that when the normal sequence of P follows elevated estrogens in late follicular phase, HSD activity is markedly enhanced in the early luteal phase. However, HSD activity in endometrium did not increase more in the fertile menstrual cycle, despite further elevations of serum P during rescue of the corpus luteum.  相似文献   

15.
16.
A number of cytokines and growth factors are known to modulate proliferation and differentiation of human endometrium. In this study, the expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and VEGF receptors, fms-like tyrosine kinase (Flt1) and kinase insert domain-containing region (KDR), and bFGF receptor 1 (Flg) were examined in the endometrium of rhesus monkey on Day 5, 10, 16, 20, 25 of menstrual cycle and on Day 19 of early pregnancy. Western blot analysis showed the specificity of the anti-human antibodies with the monkey tissue. The expression of mRNA and protein of VEGF was correlated with that of its receptor KDR, which was detected in epithelial, vascular, and myometrial cells. The localization of bFGF and its receptor Flg was similar to that of VEGF, except that the Flg was absent in the endothelial cells. Strong expression of VEGF and bFGF in the glandular epithelial cells was observed in the proliferative phase, declined in the secretory phase during the cycle. Stronger staining of these factors was also observed in the decidual cells of the pregnant uterus, as compared with the stromal cells of cycling uterus. No expression of Flt1 was detected in the tissue examined in this study. These data suggest that VEGF, bFGF, and their receptors play important roles in epithelial and stromal development, angiogenesis, and blood vessel function in the endometrium during the menstrual cycle and early pregnancy of the rhesus monkey.  相似文献   

17.
18.
Inhibins are dimeric glycoproteins composed of an alpha (alpha) subunit and one of two possible beta (beta-) subunits (betaA or betaB). The aims of this study were to assess the frequency and tissue distribution patterns of the inhibin subunits in normal human endometrium. Samples from human endometrium from proliferative phase (PP; n=32), early secretory phase (ES; n=10) and late secretory phase (LS; n=12) were obtained. Immunohistochemistry, immunofluorescence and a statistical analysis were performed. All three inhibin subunits were expressed by normal endometrium by immunohistochemistry and immunofluorescence. Inhibin-alpha was primarily detected in glandular epithelial cells, while inhibin-beta subunits were additionally localised in stromal tissue. Inhibin-alpha staining reaction increased significantly between PP and ES (P<0.05), PP and LS (P<0.01), and ES and LS (P<0.02). Inhibin-betaA and -betaB were significant higher in LS than PP (P<0.05) and LS than ES (P<0.05). All three inhibin subunits were expressed by human endometrium varying across the menstrual cycle. This suggests substantial functions in human implantation of inhibin-alpha subunit, while stromal expression of the beta subunits could be important in the paracrine signalling for adequate endometrial maturation. The distinct expression in human endometrial tissue suggests a synthesis of inhibins into the lumen and a predominant secretion of activins into the stroma.  相似文献   

19.
CA 125 is an excretory product of human endometrial glands   总被引:4,自引:0,他引:4  
The present investigation was undertaken to study the cellular localization and kinetics of synthesis of CA 125 in the endometrium. CA 125 was localized by immunohistochemistry to the infranuclear region of epithelial cells during the proliferative phase and to the apical luminal border during the secretory phase. In gestational endometrium, both the cytoplasm and the apical luminal border of epithelial cells were intensely positive. No staining was seen in endometrial stromal cells during the normal cycle or in decidualized endometria. Results obtained from in vitro cultures of separated glandular and stromal cells were similar to those obtained by immunohistochemistry. That is, epithelial cells released between 5 and 25 times more CA 125 into the culture medium than did stromal cells. The release of CA 125 was highest in epithelial and stromal cells obtained during the early secretory phase. CA 125 concentrations were markedly elevated in endometrial aspirations obtained during the secretory phase or in endometria with crumbling stroma compared to plasma levels. Plasma levels of CA 125 were slightly elevated during menses. These results suggest that CA 125 is an exocrine product of endometrial epithelial cells. Plasma levels of CA 125 may be of endometrial origin only when the membrane barriers, which normally prevent its entry into the circulation, are damaged.  相似文献   

20.
The presence of immunoreactive beta-endorphin (ir beta-E) in the endometrium was studied by immunoperoxidase staining of tissue sections at various stages of the menstrual cycle. Ir beta-E was found in the endometrium during the secretory phase of the cycle, from the fourth postovulatory day to the desquamating phase, but not in the proliferative phase or during the first three postovulatory days of the cycle. Ir beta-E was located in the cytoplasm of the epithelial cells of the glands. Samples of endometrium were homogenized, and peptides were extracted with Sep Pak C18 cartridge, followed by purification of ir beta-E by cation-exchange high-pressure liquid chromatography. In samples of secretory endometrium, a peak of ir beta-E was found with identical location of that of reference beta-E. The concentration of ir beta-E in the secretory endometrium varied from 5.0 to 12.6 pg/g of tissue. The appearance of ir beta-E in the endometrium during the secretory phase may have importance in the early events of reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号