首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the ubiquitin pathway for intracellular protein breakdown, proteins ligated to ubiquitin are degraded by a large (26 S) ATP-dependent protease complex. It was found previously that the 26 S complex is assembled from three different enzyme components by a process that requires MgATP. In addition, MgATP is also required for the continued action of the 26 S complex in the breakdown of ubiquitin-protein conjugates. In the present study we have tried to gain some insight into the mode of action of ATP by following ATP hydrolysis by the 26 S complex and its three components. It was found that none of the three unassembled components had significant ATPase activity, but such activity appeared following their entry into the 26 S complex. The presence of all three components and of MgATP was required for the formation of complex-associated ATPase activity. GTP and UTP cannot replace ATP for complex assembly, but these nucleotides can substitute for ATP in the stimulation of the conjugate-degrading activity of the 26 S complex. Unlabeled GTP and UTP inhibit the hydrolysis of [gamma-32P] ATP by complex-associated ATPase, indicating that this activity is related to the latter site of ATP action in this system.  相似文献   

2.
Mammalian cells contain two large proteolytic complexes, the 650-kDa proteasome (or multicatalytic protease) and the 1500-kDa (26 S) Ubiquitin-conjugate-degrading enzyme. Since the proteasome is also required for the ATP-dependent degradation of ubiquitinated proteins, we tested whether it may be a component of the larger complex. The proteasome normally is soluble in 38% ammonium sulfate. However, after preincubation of reticulocyte extracts with ATP, several proteasome activities appeared in the 38% ammonium sulfate pellet, including the ability to degrade hydrophobic peptides and 14C-casein. Also, following preincubation with ATP, the precipitable fraction could degrade 125I-lysozyme-ubiquitin (Ub) conjugates. The activities were not present after incubation without ATP or with a nonmetabolizable ATP analog. Nondenaturing gel electrophoresis indicated the ATP-dependent appearance of a new band which degraded proteasome substrates, and reacted with an anti-proteasome monoclonal antibody on Western blot. This new band appeared larger than the proteasome and migrated similarly to the larger Ub-conjugate-degrading complex. The formation of the larger complex required factor(s) present in the 38% ammonium sulfate pellet and either the 40-80% fraction or the purified proteasome from reticulocytes or muscle. After complex formation, hydrolysis of Ub-protein conjugates and also the non-ubiquitinated substrate, casein, was stimulated severalfold by ATP, but non-metabolizable ATP analogs had little or no effect. Thus, the proteasome corresponds to component CF-3 of Ganoth et al. (Ganoth, D., Leshinisky, E., Eytan, E., and Hershkov, A. (1989) J. Biol. Chem. 263 12412-12419) and undergoes an energy-dependent association with other factors to form the 1500-kDa, ATP-requiring proteolytic complex.  相似文献   

3.
We have purified two high molecular weight proteases approximately 400-fold from rabbit reticulocyte lysate. Both enzymes hydrolyze 125I-alpha-casein and 4-methylcoumaryl-7-amide peptides with tyrosine, phenylalanine, or arginine at the P1 position. Both are inhibited by hemin, thiol reagents, chymostatin, and leupeptin. They differ, however, by other criteria. Degradation of 125I-lysozyme-ubiquitin conjugates and succinyl-Leu-Leu-Val-Tyr-4-methylcoumaryl-7-amide by the larger 26 S protease is stimulated by ATP. Based on sedimentation, gel filtration, and nondenaturing polyacrylamide gel electrophoresis, the ATP-dependent protease has a molecular weight of 1,000,000 +/- 100,000 and is a multisubunit complex. The smaller 20 S protease has a molecular weight of 700,000 +/- 20,000 and is composed of 8-10 separate subunits with Mr values between 21,000 and 32,000. It does not require nucleotides for degradation of protein or peptide substrates. This smaller enzyme is similar, if not identical, to the "multicatalytic proteinase complex" first described by Wilk and Orlowski (Wilk, S., and Orlowski, M. (1983) J. Neurochem. 40, 842-849).  相似文献   

4.
In rabbit reticulocytes, the hexokinase (EC 2.7.1.1)-specific activity is 4-5 times that of corresponding mature red cells. Immunoprecipitation of hexokinase by a polyclonal antibody made in vitro shows that this maturation-dependent hexokinase decay is not due to accumulation of inactive enzyme molecules but to degradation of hexokinase. A cell-free system derived from rabbit reticulocytes, but not mature erythrocytes, was found to catalyze the decay of hexokinae activity and the degradation of 125I-labeled enzyme. This degradation is ATP-dependent and requires both ubiquitin and a proteolytic fraction retained by DEAE-cellulose. Maximum ATP-dependent degradation was obtained at pH 7.5 in the presence of MgATP. MgGTP could replace MgATP with a relative stimulation of 0.90. 125I-Hexokinase incubated with reticulocyte extract in the presence of ATP forms high molecular weight aggregates that reach a steady-state concentration in 1 h, whereas the degradation of the enzyme is linear up to 8 h, suggesting that the formation of protein aggregates precedes enzyme catabolism. These aggregates are stable upon boiling in 2% sodium dodecyl sulfate, 3% mercaptoethanol and probably represent an intermediate step in the enzyme degradation with hexokinase and other proteins covalently conjugate to ubiquitin. That hexokinase could be conjugated to ubiquitin was shown by the formation of 125I-ubiquitin-hexokinase complexes in the presence of ATP and the enzymes of the ubiquitin-protein ligase system. Thus, the decay of hexokinase during reticulocyte maturation is ATP- and ubiquitin-dependent and suggests a new physiological role for the energy-dependent degradation system of reticulocytes.  相似文献   

5.
1. The lag time before maximum velocity of ATP hydrolysis is reached upon mixing ATP with F1 is much greater than can be explained by a simple Michaelis-Menten mechanism, and must be due to an activation reaction. The lag time is dependent on the concentration of MgATP (half-maximal at 30 microM) and is equal to 30 ms at infinite MgATP concentration. The initial rate of hydrolysis by nucleotide-depleted F1 is much greater than with normal F1. It is tentatively suggested that the activation reaction with normal preparations is due to replacement of firmly bound ADP by MaATP. 2. After the initial time lag, the reaction follows very closely first-order kinetics provided that the concentration of MgATP is much less than the Km and the reaction is completed within 2 s. This is not expected if the dissociation constant of the enzyme-MgADP complex, an intermediate in the enzymic reaction, is much lower than the Km as has been reported in the literature. The value of V/Km, calculated from the exponential decay, is very close to that calculated from independent measurements of V and Km. 3. The low values for Ki(ADP) reported in the literature were found to be due to a slow (in the order of seconds) formation of an inhibited MgADP-enzyme complex. Dissipation of this inhibited complex by ATP requires seconds. The dissociation constant of the MgADP-enzyme complex that is an intermediate in the enzyme reaction was found to be 150 microM. 4. ADP but not ATP becomes firmly bound to nucleotide-depleted F1 in the absence of Mg2+.  相似文献   

6.
Although protein breakdown in most cells seems to require metabolic energy, it has only been possible to establish a soluble ATP-dependent proteolytic system in extracts of reticulocytes and erythroleukemia cells. We have now succeeded in demonstrating in soluble extracts and more purified preparations from rabbit skeletal muscle a 12-fold stimulation by ATP of breakdown of endogenous proteins and a 6-fold stimulation of 125I-lysozyme degradation. However, it has still not been possible to demonstrate such large effects of ATP in similar preparations from liver. Nevertheless, after fractionation by DEAE-chromatography and gel filtration, we found that extracts from liver as well as muscle contain both the enzymes which conjugate ubiquitin to 125I-lysozyme and an enzyme which specifically degrades the ubiquitin-protein conjugates. When this proteolytic activity was recombined with the conjugating enzymes, ATP + ubiquitin-dependent degradation of many proteins was observed. This proteinase is unusually large, approx. 1500 kDa, requires ATP hydrolysis for activity and resembles the ubiquitin-protein-conjugate degrading activity isolated from reticulocytes. Thus the ATP + ubiquitin-dependent pathway is likely to be present in all mammalian cells, although certain tissues may contain inhibitory factors.  相似文献   

7.
The small GTPase Ran functions in several critical processes in eukaryotic cells including nuclear transport, nuclear envelope formation, and spindle formation. A RanGDP-binding protein, NTF2, facilitates translocation of RanGDP through the nuclear pore complex and also acts to stabilize RanGDP against nucleotide exchange. Here, we identify a novel activity that stimulates release of GDP from Ran in the presence of NTF2. Hydrolyzable ATP enhances the GDP dissociation activity, and this enhancement is inhibited by nonhydrolyzable ATP analogues. In contrast, neither hydrolyzable ATP nor nonhydrolyzable ATP analogues affect GDP dissociation from Ran catalyzed by recombinant RCC1 or inhibition of GDP dissociation from Ran by recombinant NTF2. The ATP-dependent RanGDP dissociation activity therefore has the properties of a RanGDP dissociation inhibitor (GDI) displacement factor (RanGDF) where the GDI is NTF2. A protein phosphatase inhibitor mixture stimulates the RanGDF activity, suggesting the activity is regulated by phosphorylation. We propose that the ATP-dependent NTF2 releasing factor may have a role in the RanGDP/GTP cycle.  相似文献   

8.
It is known that two types of high-molecular-mass protease complexes are present in the cytosol of mammalian cells; a 20S latent multicatalytic proteinase named the proteasome, and a large proteolytic complex with an apparent sedimentation coefficient of 26S that catalyzes ATP-dependent breakdown of proteins conjugated with ubiquitin. In this work, we first demonstrated that a low concentration of SDS was required for activation of the latent proteasome, whereas the 26S complex degraded substrates for proteasomes in the absence of SDS. Moreover, the 26S complex was greatly stabilized in the presence of 2 mM ATP and 20% glycerol. Based on these characteristics, we next devised a novel procedure for purification of the 26S proteolytic complexes from human kidney. In this procedure, the proteolytic complexes were precipitated from cytoplasmic extracts by ultracentrifugation for 5 h at 105000 x g, and the large 26S complexes were clearly separated from the 20S proteasomes by molecular-sieve chromatography on a Biogel A-1.5 m column. The 26S enzyme was then purified to apparent homogeneity by successive chromatographies on hydroxyapatite and Q Sepharose, then by glycerol density-gradient centrifugation. Electrophoretic and immunochemical analyses showed that the purified human 26S complex consisted of multiple subunits of proteasomes with molecular masses of 21-31 kDa and 13-15 protein components ranging in molecular mass over 35-110 kDa, which were directly associated with the proteasome. The purified 26S proteolytic complex degraded 125I-labeled lysozyme-ubiquitin conjugates in an ATP-dependent manner. The 26S enzyme also showed high ATPase activity, which was copurified with the complex. Vanadate and hemin strongly inhibited not only ATP cleavage, but also ATP-dependent breakdown of ubiquitinligated proteins, suggesting that the 26S complex hydrolyzes ATP and ubiquitinated proteins by closely linked mechanisms. These findings indicate that the 26S complex consists of a proteasome with proteolytic function and multiple other components including an ATPase that regulates energy-dependent, ubiquitin-mediated protein degradation.  相似文献   

9.
The maltose transport system in Escherichia coli is a member of the ATP-binding cassette superfamily of transporters that is defined by the presence of two nucleotide-binding domains or subunits and two transmembrane regions. The bacterial import systems are unique in that they require a periplasmic substrate-binding protein to stimulate the ATPase activity of the transport complex and initiate the transport process. Upon stimulation by maltose-binding protein, the intact MalFGK(2) transport complex hydrolyzes ATP with positive cooperativity, suggesting that the two nucleotide-binding MalK subunits interact to couple ATP hydrolysis to transport. The ATPase activity of the intact transport complex is inhibited by vanadate. In this study, we investigated the mechanism of inhibition by vanadate and found that incubation of the transport complex with MgATP and vanadate results in the formation of a stably inhibited species containing tightly bound ADP that persists after free vanadate and nucleotide are removed from the solution. The inhibited species does not form in the absence of MgCl(2) or of maltose-binding protein, and ADP or another nonhydrolyzable analogue does not substitute for ATP. Taken together, these data conclusively show that ATP hydrolysis must precede the formation of the vanadate-inhibited species in this system and implicate a role for a high-energy, ADP-bound intermediate in the transport cycle. Transport complexes containing a mutation in a single MalK subunit are still inhibited by vanadate during steady-state hydrolysis; however, a stably inhibited species does not form. ATP hydrolysis is therefore necessary, but not sufficient, for vanadate-induced nucleotide trapping.  相似文献   

10.
It is generally accepted that ATP is required for intracellular protein breakdown. Reticulocytes contain a soluble ATP-dependent pathway for the degradation of highly abnormal proteins and for the elimination of certain proteins during cell maturation. Reticulocytes and erythrocytes also selectively degrade proteins damaged by oxidation. When these cells were exposed to oxidants, such as phenylhydrazine or nitrite, they showed a large increase in protein breakdown. This oxidant-induced proteolysis was not inhibited in cells depleted of ATP. However, ATP depletion did prevent the degradation of pre-existent cell proteins. In reticulocyte extracts, phenylhydrazine-treated hemoglobin is also degraded rapidly by an ATP-independent process, unlike endogenous proteins and many exogenous polypeptides. This lack of an ATP requirement means that the degradation of oxidant-damaged proteins does not require ligation to ubiquitin (even though phenylhydrazine treatment does make hemoglobin a very good substrate for ubiquitin conjugation). In many respects, the pathway for breakdown of oxidant-treated hemoglobin differs from the ATP-dependent process. The latter has a much higher activation energy than the degradation of oxidized proteins. The ATP-dependent process is inhibited by hemin, 3,4-dichloroisocoumarin, diisopropylfluorophosphate and N-ethylmaleimide. The ATP-independent pathway is less sensitive to N-ethylmaleimide, hemin, and 3,4-dichloroisocoumarin and is not affected by diisopropylfluorophosphate. In addition, only the ATP-dependent proteolytic process is inactivated by dilution or incubation at 37 degrees C in the absence of nucleotides. Reticulocytes thus contain multiple soluble systems for degrading proteins and can rapidly hydrolyze certain types of abnormal proteins by either an ATP-independent or ATP-dependent process. Erythrocytes lack the ATP-dependent process present in reticulocytes; however, erythrocytes retain the capacity to degrade oxidant-damaged hemoglobin. These two processes probably are active in the elimination of different types of abnormal proteins.  相似文献   

11.
To produce ubiquitinated substrates for studies on ATP-dependent proteolysis, 125I-lysozyme was incubated in hemin-inhibited rabbit reticulocyte lysates. A portion of the labeled molecules became linked to ubiquitin in large covalent complexes. When these were partially purified and returned to uninhibited lysates containing ATP, the conjugated lysozyme molecules were degraded 10 times faster than free lysozyme. Purification of covalently modified lysozyme from hemin-inhibited lysates containing 125I-ubiquitin and 131I-lysozyme confirmed that both molecules were present in the complexes. The doubly labeled conjugates also permitted us to determine the fate of each molecule in uninhibited lysates. Besides degradation of lysozyme, there was a progressive release of intact lysozyme molecules from the complexes. This disassembly, which was the only fate of the complexes in the absence of ATP, proceeded through a series of smaller intermediates, several having molecular weights expected for ubiquitin-lysozyme conjugates, and eventually free lysozyme was regenerated. The behavior of labeled ubiquitin was similar, though not identical, to that of lysozyme. Even in lysates containing ATP ubiquitin emerged from the complex undegraded. Furthermore, ubiquitin was present in a greater number of species than was lysozyme. The demonstration that ubiquitin-lysozyme conjugates are rapidly degraded provides support for the hypothesis of Hershko, Rose, Ciechanover, and their colleagues that a key function of ubiquitin is to modify the proteolytic substrate. Further support for the hypothesis is presented in the following paper where we show that the conjugated lysozyme molecules are substrates for an ATP-dependent protease that does not degrade free lysozyme.  相似文献   

12.
To investigate the existence of a ubiquitin-dependent protein degradation system in the brain, the proteolytic activity of the cerebral cortex was examined. The soluble extract of rat cerebral cortex degraded 125I-radiolabeled lysozyme in an ATP-dependent manner. The ATP-dependent proteolysis was suppressed with iodoacetamide, which inhibits ubiquitin conjugation, and was abolished by blocking of the amino residues of lysozyme. These results suggest the participation of ubiquitination in the proteolytic activity. An ATP-dependent 125I-ubiquitin-conjugating activity was detected in fraction II from the cerebral cortex. The presence of ATP-dependent proteolytic activity which acted preferentially on ubiquitinated lysozyme was demonstrated, using ubiquitin-125I-lysozyme conjugates as a substrate. The proteinase had a molecular mass of 1500 kDa and displayed nucleotide dependence and sensitivity to various proteinase inhibitors similar to those of the 26S proteinase complex found in reticulocytes. Dialysis of the soluble fraction caused a decrease in the proteolytic activity of ATP-dependent and preferential for ubiquitin-lysozyme conjugates and a reciprocal increase in the ATP-independent free 125I-lysozyme-degrading activity which was scarcely detected before dialysis. The former ATP-dependent proteolytic activity may play a physiological role in the brain.  相似文献   

13.
E F Wajnberg  J M Fagan 《FEBS letters》1989,243(2):141-144
Reticulocytes contain a soluble nonlysosomal proteolytic pathway that requires ATP and ubiquitin. Polyamines at physiological concentrations were found to inhibit rapidly the ATP-dependent proteolytic system in reticulocyte lysates; spermidine and putrescine inhibited this process by 26-72% and spermine by 71-96%. Spermine had little effect on the ATP-independent breakdown of oxidant-treated hemoglobin. By fractionating the ATP-dependent system, we show that polyamines inhibit the ATP-dependent degradation of ubiquitin-protein conjugates.  相似文献   

14.
In phagocytes, activation of the respiratory burst by chemoattractants requires ATP and involves a pertussis toxin-sensitive G protein. ATP is also required for the response elicited in permeabilized neutrophils by nonhydrolyzable GTP analogs, indicating that at least one of the ATP-dependent steps lies downstream of the receptor-coupled G protein(s). A respiratory burst can also be produced in a reconstituted cell-free system by addition of arachidonic acid. Most investigators find this response to be independent of ATP, yet stimulated by GTP analogs, implying that the ATP-dependent steps observed in the unbroken cells must precede the guanine nucleotide-requiring event. To resolve this apparent discrepancy, we studied the ATP and guanine nucleotide dependence of the oxidative response elicited by arachidonic acid in electrically permeabilized human neutrophils. Two components of the response were apparent: one was ATP-dependent, the other ATP-independent. The ATP-dependent component was partially inhibited by staurosporine, suggesting involvement of protein kinase C. This kinase signals activation of the NADPH oxidase without intervening G proteins, since stimulation by phorbol ester was unaffected by guanosine 5'-(beta-thio)diphosphate (GDP beta S). Although nonhydrolyzable GTP analogs failed to stimulate the oxidase in the absence of ATP, the ATP-independent response stimulated by arachidonic acid was found to require GTP or one of its analogs and to be inhibited by GDP beta S. The relative potency of the guanine nucleotides to support the arachidonic acid response in the absence of ATP (5'-guanylyl imidodiphosphate (GMP-PNP) greater than or equal to guanosine 5'-(gamma-thio)triphosphate GTP gamma S) greater than or equal to (GTP) differed from their efficacy to stimulate the burst in the presence of ATP (GTP gamma S greater than GMP-PNP much greater than GTP). These observations suggest the involvement of two distinct GTP-binding proteins in oxidase activation: a receptor-coupled, heterotrimeric, pertussis toxin-sensitive G protein, and a second GTP-binding protein(s) located downstream of the ATP-requiring steps, which may lie in close proximity to the NADPH oxidase. This secondary GTP-binding protein could be part of the pathway activated by chemoattractants, but does not mediate stimulation via protein kinase C. Therefore multiple parallel routes may exist for activation of the NADPH oxidase.  相似文献   

15.
Walczak HA  Dean JV 《Phytochemistry》2000,53(4):441-446
Red beet (Beta vulgaris L.) tonoplast membrane vesicles and [14C]trans-cinnamic acid-glutatione were used to study the vacuolar transport of phynylpropanoid-glutathione conjugates which are formed in peroxidase-mediated reactions. It was determined that the uptake of [14C]trans-cinnamic acid-glutathione into the tonoplast membrane vesicles was MgATP dependent and was 10-fold faster than the uptake of non-conjugated [14C]trans-cinnamic acid. Uptake of the conjugate in the presence of MgATP was not dependent on a trans-tonoblast H+-electrochemical gradient, because uptake was not affected by the addition of NH4Cl (1 mM; 0% inhibition) and was only slightly affected by gramicidin-D (5 microM; 14% inhibition). Uptake of the conjugate was inhibited 92% by the addition of vanadate (1 mM) and 71% by the addition of the model substrate S-(2,4-dinitrophenyl) glutathione (500 microM). Uptake did not occur when a nonhydrolyzable analog of ATP was used in place of MgATP. The calculated Km and Vmax values for uptake were 142 microM amd 5.95 nmol mg(-1) min(-1), respectively. Based on these results, phenylpropanoid-glutation conjugates formed in peroxidase-mediated reactions appear to be transported into the vacuole by the glutathione S-conjugate pump(s) located in the tonoplast membrane.  相似文献   

16.
The breakdown of mitochondria-containing stroma of rabbit reticulocytes is an ATP- and ubiquitin-dependent process and there is no evidence for an ATP-dependent but ubiquitin-independent proteolysis in these cells. The ubiquitin conjugate formation with heat-denatured stroma proteins is about one-fifth of that with native stroma. In reticulocytes there exist two mechanisms of ubiquitin liberation from its conjugates with stroma proteins: an ATP-dependent and hemin-resistant release of ubiquitin, which is assumed to be the first step in the degradation of ubiquitin conjugates by the protease system, and a release of ubiquitin catalyzed by an isopeptidase activity.  相似文献   

17.
Computer analysis of experimental data published in 1-3 allowed to establish the presence of two non-interacting inequivalent hydrolytic sites in actomyosin molecule, one of them being specific for binding and hydrolysis of free ATP, the other--for MgATP. Thus both species of ATP are the substrates of actomyosin ATPase. Actomyosin molecule seems to bind on more (in additon to two active sites) substrate molecule (MgATP) at some non-catalytic regulatory site. The formation of the enzyme-substrate complex having three ATP molecules (one molecule of free ATP and two--of MgATP) is accompanied by the loss of the activity. An approach to the research of kinetic equations for complex systems considerably decreasing a number of variations to consider is given in this work.  相似文献   

18.
The requirement of ATP in the second step of mRNA precursor splicing was examined by dissecting the two steps of the in vitro splicing reaction using a heat-treated nuclear extract from HeLa cells. When a mRNA precursor containing two exons and a single intron from the delta-crystallin gene was initially incubated for 60 min with the heated extract, thereby allowing only the first step of the splicing reaction to occur, and subsequently with a normal extract for 10 min, the final spliced product was produced without any lag. The production of the spliced molecule during the second incubation with the normal extract represents conversion of the intermediates already formed with the heated extract into the spliced product. The conversion was stimulated by the addition of ATP during the second incubation and inhibited by a nonhydrolyzable ATP analogue. These results led us to conclude that ATP is required for the second step of the splicing reaction.  相似文献   

19.
Previously, we isolated an ATP-dependent proteolytic pathway in muscle, liver, and reticulocytes that requires ubiquitin and the enzymes which conjugate ubiquitin to proteins. We report here that skeletal muscle contains another soluble alkaline energy-dependent (but ubiquitin-independent) proteolytic activity. The cleavage of non-ubiquitinated protein substrates by the partially purified protease requires ATP hydrolysis since ATP in the absence of Mg2+, nonhydrolyzable ATP analogs, and pyrophosphate all fail to stimulate proteolysis. Proteolytic activity is also stimulated by UTP, CTP, and GTP, although not as effectively as by ATP (Km(ATP) = 0.027 mM). The enzyme is inactivated by the serine protease inhibitors diisopropyl fluorophosphate and 3,4-dichloroisocoumarin, but not by specific inhibitors of aspartic, thiol, or metalloproteases. It is maximally active at pH 8 and has a molecular weight of approximately 600,000. This new activity differs from the 720-kDa multicatalytic proteinase, but resembles the soluble ATP-dependent proteolytic system that we previously isolated from murine erythroleukemia cells.  相似文献   

20.
Myosin is the most comprehensively studied molecular motor that converts energy from the hydrolysis of MgATP into directed movement. Its motile cycle consists of a sequential series of interactions between myosin, actin, MgATP, and the products of hydrolysis, where the affinity of myosin for actin is modulated by the nature of the nucleotide bound in the active site. The first step in the contractile cycle occurs when ATP binds to actomyosin and releases myosin from the complex. We report here the structure of the motor domain of Dictyostelium discoideum myosin II both in its nucleotide-free state and complexed with MgATP. The structure with MgATP was obtained by soaking the crystals in substrate. These structures reveal that both the apo form and the MgATP complex are very similar to those previously seen with MgATPgammaS and MgAMP-PNP. Moreover, these structures are similar to that of chicken skeletal myosin subfragment-1. The crystallized protein is enzymatically active in solution, indicating that the conformation of myosin observed in chicken skeletal myosin subfragment-1 is unable to hydrolyze ATP and most likely represents the pre-hydrolysis structure for the myosin head that occurs after release from actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号