首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. Fischer  P. Schopfer 《Protoplasma》1997,196(1-2):108-116
Summary Changes in the orientation of cortical microtubules (longitudinal vs. transverse with respect to the long cell axis) at the outer epidermal wall of maize coleoptile segments were induced by auxin, red or blue light, and mechanical stresses (cell extension or compression produced by bending). Immunofluorescent techniques were used for the quantitative determination of frequency distributions of microtubule orientation. Detailed kinetic studies showed that microtubule reorientations are temporally correlated with the simultaneously measured changes in growth rate elicited by auxin, red light, or blue light. Growth inhibition induced by depletion of endogenous auxin produces a longitudinal microtubule pattern that can be changed into a transverse pattern in a dose-dependent manner by applying exogenous auxin. A mid-point pattern with equal frequencies of longitudinal and transverse microtubules was adjusted at 2 mol/1 auxin. Bending stress applied under these conditions adjusts permanent, maximally longitudinal and transverse microtubule orientations at the compressed and extended segment sides, respectively, quantitatively mimicking the responses to differential flank growth during phototropic and gravitropic curvature. During tropic curvature the changes in microtubule pattern reflect the distribution of growth rather than the distribution of auxin. The microtubule pattern responds to auxin-dependent growth changes and mechanical stress in a synergistic manner, confirming the functional equivalence of these factors in affecting microtubule orientation. Similar results were obtained when segment growth was altered by blue or red light instead of auxin in the presence or absence of mechanical stress. It is concluded from these results that growth changes, elicited by auxin, light, etc., and mechanical stress affect microtubule orientation through a common signal perception and transduction chain.Abbreviations IAA indole-3-acetic acid (auxin) - MT cortical microtubule  相似文献   

2.
In plant cells, cortical microtubules provide tracks for cellulose-synthesizing enzymes and regulate cell division, growth, and morphogenesis. The role of microtubules in these essential cellular processes depends on the spatial arrangement of the microtubules. Cortical microtubules are reoriented in response to changes in cell growth status and cell shape. Therefore, an understanding of the mechanism that underlies the change in microtubule orientation will provide insight into plant cell growth and morphogenesis. This study demonstrated that AUGMIN subunit8 (AUG8) in Arabidopsis thaliana is a novel microtubule plus-end binding protein that participates in the reorientation of microtubules in hypocotyls when cell elongation slows down. AUG8 bound to the plus ends of microtubules and promoted tubulin polymerization in vitro. In vivo, AUG8 was recruited to the microtubule branch site immediately before nascent microtubules branched out. It specifically associated with the plus ends of growing cortical microtubules and regulated microtubule dynamics, which facilitated microtubule reorientation when microtubules changed their growth trajectory or encountered obstacle microtubules during microtubule reorientation. This study thus reveals a novel mechanism underlying microtubule reorientation that is critical for modulating cell elongation in Arabidopsis.  相似文献   

3.
Microfibril deposition in most plant cells is influenced by cortical microtubules. Thus, cortical microtubules are templates that provide spatial information to the cell wall. How cortical microtubules acquire their spatial information and are positioned is unknown. There are indications that plant cells respond to mechanical stresses by using microtubules as sensing elements. Regenerating protoplasts from tobacco (Nicotiana tabacum) were used to determine whether cells can be induced to expand in a preferential direction in response to an externally applied unidirectional force. Additionally, an anti-microtubule herbicide was used to investigate the role of microtubules in the response to this force. Protoplasts were embedded in agarose, briefly centrifuged at 28 to 34g, and either cultured or immediately prepared for immunolocalization of their microtubules. The microtubules within many centrifuged protoplasts were found to be oriented parallel to the centrifugal force vector. Most protoplasts elongated with a preferential axis that was oriented 60 to 90 degrees to the applied force vector. Protoplasts treated transiently with the reversible microtubule-disrupting agent amiprophos-methyl (applied before and during centrifugation) elongated but without a preferential growth axis. These results indicate that brief biophysical forces may influence the alignment of cortical microtubules and that microtubules themselves act as biophysical responding elements.  相似文献   

4.
Microtubules have long been known to play a key role in plant cell morphogenesis, but just how they fulfill this function is unclear. Transverse microtubules have been thought to constrain the movement of cellulose synthase complexes in order to generate transverse microfibrils that are essential for elongation growth. Surprisingly, some recent studies demonstrate that organized cortical microtubules are not essential for maintaining or re-establishing transversely oriented cellulose microfibrils in expanding cells. At the same time, however, there is strong evidence that microtubules are intimately associated with cellulose synthesis activity, especially during secondary wall deposition. These apparently conflicting results provide important clues as to what microtubules do at the interface between the cell and its wall. I hypothesize that cellulose microfibril length is an important parameter of wall mechanics and suggest ways in which microtubule organization may influence microfibril length. This concept is in line with current evidence that links cellulose synthesis levels and microfibril orientation. Furthermore, in light of new evidence showing that a wide variety of proteins bind to microtubules, I raise the broader question of whether a major function of plant microtubules is in modulating signaling pathways as plants respond to sensory inputs from the environment.  相似文献   

5.
Preuss ML  Delmer DP  Liu B 《Plant physiology》2003,132(1):154-160
Microtubules in interphase plant cells form a cortical array, which is critical for plant cell morphogenesis. Genetic studies imply that the minus end-directed microtubule motor kinesin-like calmodulin-binding protein (KCBP) plays a role in trichome morphogenesis in Arabidopsis. However, it was not clear whether this motor interacted with interphase microtubules. In cotton (Gossypium hirsutum) fibers, cortical microtubules undergo dramatic reorganization during fiber development. In this study, cDNA clones of the cotton KCBP homolog GhKCBP were isolated from a cotton fiber-specific cDNA library. During cotton fiber development from 10 to 21 DPA, the GhKCBP protein level gradually decreases. By immunofluorescence, GhKCBP was detected as puncta along cortical microtubules in fiber cells of different developmental stages. Thus our results provide evidence that GhKCBP plays a role in interphase cell growth likely by interacting with cortical microtubules. In contrast to fibers, in dividing cells of cotton, GhKCBP localized to the nucleus, the microtubule preprophase band, mitotic spindle, and the phragmoplast. Therefore KCBP likely exerts multiple roles in cell division and cell growth in flowering plants.  相似文献   

6.
Kirik A  Ehrhardt DW  Kirik V 《The Plant cell》2012,24(3):1158-1170
Organization of microtubules into ordered arrays involves spatial and temporal regulation of microtubule nucleation. Here, we show that acentrosomal microtubule nucleation in plant cells involves a previously unknown regulatory step that determines the geometry of microtubule nucleation. Dynamic imaging of interphase cortical microtubules revealed that the ratio of branching to in-bundle microtubule nucleation on cortical microtubules is regulated by the Arabidopsis thaliana B' subunit of protein phosphatase 2A, which is encoded by the TONNEAU2/FASS (TON2) gene. The probability of nucleation from γ-tubulin complexes localized at the cell cortex was not affected by a loss of TON2 function, suggesting a specific role of TON2 in regulating the nucleation geometry. Both loss of TON2 function and ectopic targeting of TON2 to the plasma membrane resulted in defects in cell shape, suggesting the importance of TON2-mediated regulation of the microtubule cytoskeleton in cell morphogenesis. Loss of TON2 function also resulted in an inability for cortical arrays to reorient in response to light stimulus, suggesting an essential role for TON2 and microtubule branching nucleation in reorganization of microtubule arrays. Our data establish TON2 as a regulator of interphase microtubule nucleation and provide experimental evidence for a novel regulatory step in the process of microtubule-dependent nucleation.  相似文献   

7.
Molecular encounters at microtubule ends in the plant cell cortex   总被引:1,自引:0,他引:1  
The cortical arrays that accompany plant cell division and elongation are organized by a subtle interplay between intrinsic properties of microtubules, their self-organization capacity and a variety of cellular proteins that interact with them, modify their behaviour and drive organization of diverse, higher order arrays during the cell cycle, cell growth and differentiation. As a polar polymer, the microtubule has a minus and a plus end, which differ in structure and dynamic characteristics, and to which different sets of partners and activities associate. Recent advances in characterization of minus and plus end directed proteins provide insights into both plant microtubule properties and the way highly organized cortical arrays emerge from the orchestrated activity of individual microtubules.  相似文献   

8.
Li T 《Journal of biomechanics》2008,41(8):1722-1729
As the most rigid cytoskeletal filaments, microtubules bear compressive forces in living cells, balancing the tensile forces within the cytoskeleton to maintain the cell shape. It is often observed that, in living cells, microtubules under compression severely buckle into short wavelengths. By contrast, when compressed, isolated microtubules in vitro buckle into single long-wavelength arcs. The critical buckling force of the microtubules in vitro is two orders of magnitude lower than that of the microtubules in living cells. To explain this discrepancy, we describe a mechanics model of microtubule buckling in living cells. The model investigates the effect of the surrounding filament network and the cytosol on the microtubule buckling. The results show that, while the buckling wavelength is set by the interplay between the microtubules and the elastic surrounding filament network, the buckling growth rate is set by the viscous cytosol. By considering the nonlinear deformation of the buckled microtubule, the buckling amplitude can be determined at the kinetically constrained equilibrium. The model quantitatively correlates the microtubule bending rigidity, the surrounding filament network elasticity, and the cytosol viscosity with the buckling wavelength, the buckling growth rate, and the buckling amplitude of the microtubules. Such results shed light on designing a unified experimental protocol to measure various critical mechanical properties of subcellular structures in living cells.  相似文献   

9.
We have studied the relationship between pH banding and the organization of cortical microtubules in the alga Chara corallina Klein ex Willd. Microtubules were visualized by immunofluorescence and also by imunogold-silver enhancement to allow immediate comparison of microtubule arrangement with visible structural cell features. In cells that are nearing growth completion, microtubule number and alignment change between acidic and alkaline bands over a distance of a few micrometres. Thus, it appears that the still unknown mechanisms for microtubule organization respond to the localized differences in membrane properties. Band formation was not prevented when microtubules were depolymerized with the herbicide oryzalin, demonstrating that microtubules are not necessary for pH bands to develop in these cells.Abbreviations DMSO dimethylsulfoxide - MT microtubule We thank Frank Gubler for helpful advice on immunogold-silver enhancement procedures, Brian Gunning for tuition in confocal microscopy, Ann Cork for assistance with photography and Dean Price for helpful discussions. G.O.W. gratefully acknowledges the receipt of a National Research Fellowship and a Queen Elizabeth II Fellowship from the Australian Research Council.  相似文献   

10.
Gossot O  Geitmann A 《Planta》2007,226(2):405-416
Cellular growth and movement require both the control of direction and the physical capacity to generate forces. In animal cells directional control and growth forces are generated by the polymerization of and traction between the elements of the cytoskeleton. Whether actual forces generated by the cytoskeleton play a role in plant cell growth is largely unknown as the interplay between turgor and cell wall is considered to be the predominant structural feature in plant cell morphogenesis. We investigated the mechano-structural role of the cytoskeleton in the invasive growth of pollen tubes. These cells elongate rapidly by tip growth and have the ability to penetrate the stigmatic and stylar tissues in order to drill their way to the ovule. We used agents interfering with cytoskeletal functioning, latrunculin B and oryzalin, in combination with mechanical in vitro assays. While microtubule degradation had no significant effect on the pollen tubes’ capacity to invade a mechanical obstacle, latrunculin B decreased the pollen tubes’ ability to elongate in stiffened growth medium and to penetrate an obstacle. On the other hand, the ability to maintain a certain growth direction in vitro was affected by the degradation of microtubules but not actin filaments. To find out whether both cytoskeletal elements share functions or interact we used both drugs in combination resulting in a dramatic synergistic response. Fluorescent labeling revealed that the integrity of the microtubule cytoskeleton depends on the presence of actin filaments. In contrast, actin filaments seemed independent of the configuration of microtubules.  相似文献   

11.
The plant cortical microtubule array is a unique acentrosomal array that is essential for plant morphogenesis. To understand how this array is organized, we exploited the microtubule (+)-end tracking activity of two Arabidopsis EB1 proteins in combination with FRAP (fluorescence recovery after photobleaching) experiments of GFP-tubulin to examine the relationship between cortical microtubule array organization and polarity. Significantly, our observations show that the majority of cortical microtubules in ordered arrays, within a particular cell, face the same direction in both Arabidopsis plants and cultured tobacco cells. We determined that this polar microtubule coalignment is at least partially due to a selective stabilization of microtubules, and not due to a change in microtubule polymerization rates. Finally, we show that polar microtubule coalignment occurs in conjunction with parallel grouping of cortical microtubules and that cortical array polarity is progressively enhanced during array organization. These observations reveal a novel aspect of plant cortical microtubule array organization and suggest that selective stabilization of dynamic cortical microtubules plays a predominant role in the self-organization of cortical arrays.  相似文献   

12.
The microtubule cytoskeleton and the cell wall both play key roles in plant cell growth and division, determining the plant’s final stature. At near weightlessness, tubulin polymerizes into microtubules in vitro, but these microtubules do not self-organize in the ordered patterns observed at 1g. Likewise, at near weightlessness cortical microtubules in protoplasts have difficulty organizing into parallel arrays, which are required for proper plant cell elongation. However, intact plants do grow in space and therefore should have a normally functioning microtubule cytoskeleton. Since the main difference between protoplasts and plant cells in a tissue is the presence of a cell wall, we studied single, but walled, tobacco BY-2 suspension-cultured cells during an 8-day space-flight experiment on board of the Soyuz capsule and the International Space Station during the 12S mission (March–April 2006). We show that the cortical microtubule density, ordering and orientation in isolated walled plant cells are unaffected by near weightlessness, as are the orientation of the cellulose microfibrils, cell proliferation, and cell shape. Likely, tissue organization is not essential for the organization of these structures in space. When combined with the fact that many recovering protoplasts have an aberrant cortical microtubule cytoskeleton, the results suggest a role for the cell wall, or its production machinery, in structuring the microtubule cytoskeleton.  相似文献   

13.
Summary The relationship between cell expansion, cortical microtubule orientation, and patterned secondary-cell-wall deposition was investigated in xylogenic cell suspension cultures ofZinnia elegans L. The direction of cell expansion in these cultures is pH dependent; cells elongate at pH 5.5–6.0, but expand isodiametrically at pH 6.5–7.0. Contrary to our expectations, indirect immunofluorescence revealed that cortical microtubules are oriented parallel to the long axis in elongating cells. Pulse labeling of the walls of isolated cells with the fluorochrome Tinopal LPW demonstrated that xylogenic Zinnia mesophyll cells elongate by tip growth in culture. These results confirm that cortical microtubules in developing tracheary elements reorient before bundling to form transverse cortical microtubule bands. This rearrangement may allow the secondary cell wall pattern to conform to cell shape, independent of the direction in which the cell was expanding prior to reorientation.Abbreviations CMT cortical microtubules - Mes 2-[N-morpholino]ethanesulfonic acid - TE tracheary element  相似文献   

14.
The cortical microtubule array provides spatial information to the cellulose-synthesizing machinery within the plasma membrane of elongating cells. Until now data indicated that information is transferred from organized cortical microtubules to the cellulose-synthesizing complex, which results in the deposition of ordered cellulosic walls. How cortical microtubules become aligned is unclear. The literature indicates that biophysical forces, transmitted by the organized cellulose component of the cell wall, provide a spatial cue to orient cortical microtubules. This hypothesis was tested on tobacco (Nicotiana tabacum L.) protoplasts and suspension-cultured cells treated with the cellulose synthesis inhibitor isoxaben. Isoxaben (0.25–2.5 μm) inhibited the synthesis of cellulose microfibrils (detected by staining with 1 μg mL−1 fluorescent dye and polarized birefringence), the cells failed to elongate, and the cortical microtubules failed to become organized. The affects of isoxaben were reversible, and after its removal microtubules reorganized and cells elongated. Isoxaben did not depolymerize microtubules in vivo or inhibit the polymerization of tubulin in vitro. These data are consistent with the hypothesis that cellulose microfibrils, and hence cell elongation, are involved in providing spatial cues for cortical microtubule organization. These results compel us to extend the microtubule/microfibril paradigm to include the bidirectional flow of information.  相似文献   

15.
The Arabidopsis thaliana MAP65-1 and MAP65-2 genes are members of the larger eukaryotic MAP65/ASE1/PRC gene family of microtubule-associated proteins. We created fluorescent protein fusions driven by native promoters that colocalized MAP65-1 and MAP65-2 to a subset of interphase microtubule bundles in all epidermal hypocotyl cells. MAP65-1 and MAP65-2 labeling was highly dynamic within microtubule bundles, showing episodes of linear extension and retraction coincident with microtubule growth and shortening. Dynamic colocalization of MAP65-1/2 with polymerizing microtubules provides in vivo evidence that plant cortical microtubules bundle through a microtubule-microtubule templating mechanism. Analysis of etiolated hypocotyl length in map65-1 and map65-2 mutants revealed a critical role for MAP65-2 in modulating axial cell growth. Double map65-1 map65-2 mutants showed significant growth retardation with no obvious cell swelling, twisting, or morphological defects. Surprisingly, interphase microtubules formed coaligned arrays transverse to the plant growth axis in dark-grown and GA(4)-treated light-grown map65-1 map65-2 mutant plants. We conclude that MAP65-1 and MAP65-2 play a critical role in the microtubule-dependent mechanism for specifying axial cell growth in the expanding hypocotyl, independent of any mechanical role in microtubule array organization.  相似文献   

16.
Cytoplasmic dynein transports short microtubules down the axon in part by pushing against the actin cytoskeleton. Recent studies have suggested that comparable dynein-driven forces may impinge upon the longer microtubules within the axon. Here, we examined a potential role for these forces on axonal retraction and growth cone turning in neurons partially depleted of dynein heavy chain (DHC) by small interfering RNA. While DHC-depleted axons grew at normal rates, they retracted far more robustly in response to donors of nitric oxide than control axons, and their growth cones failed to efficiently turn in response to substrate borders. Live cell imaging of dynamic microtubule tips showed that microtubules in DHC-depleted growth cones were largely confined to the central zone, with very few extending into filopodia. Even under conditions of suppressed microtubule dynamics, DHC depletion impaired the capacity of microtubules to advance into the peripheral zone of the growth cone, indicating a direct role for dynein-driven forces on the distribution of the microtubules. These effects were all reversed by inhibition of myosin-II forces, which are known to underlie the retrograde flow of actin in the growth cone and the contractility of the cortical actin during axonal retraction. Our results are consistent with a model whereby dynein-driven forces enable microtubules to overcome myosin-II-driven forces, both in the axonal shaft and within the growth cone. These dynein-driven forces oppose the tendency of the axon to retract and permit microtubules to advance into the peripheral zone of the growth cone so that they can invade filopodia.  相似文献   

17.
Xylem cell differentiation involves temporal and spatial regulation of secondary cell wall deposition. The cortical microtubules are known to regulate the spatial pattern of the secondary cell wall by orientating cellulose deposition. However, it is largely unknown how the microtubule arrangement is regulated during secondary wall formation. Recent findings of novel plant microtubule-associated proteins in developing xylem vessels shed new light on the regulation mechanism of the microtubule arrangement leading to secondary wall patterning. In addition, in vitro culture systems allow the dynamics of microtubules and microtubule-associated proteins during secondary cell wall formation to be followed. Therefore, this review focuses on novel aspects of microtubule dynamics leading to secondary cell wall patterning with a focus on microtubule-associated proteins.  相似文献   

18.
The presence of diffuse morphogen gradients in tissues supports a view in which growth is locally homogenous. Here we challenge this view: we used a high-resolution quantitative approach to reveal significant growth variability among neighboring cells in the shoot apical meristem, the plant stem cell niche. This variability was strongly decreased in a mutant impaired in the microtubule-severing protein katanin. Major shape defects in the mutant could be related to a local decrease in growth heterogeneity. We show that katanin is required for the cell's competence to respond to the mechanical forces generated by growth. This provides the basis for a model in which microtubule dynamics allow the cell to respond efficiently to mechanical forces. This in turn can amplify local growth-rate gradients, yielding more heterogeneous growth and supporting morphogenesis.  相似文献   

19.
Complexes of microtubules, vesicles, and (to varying degrees) dense matrix material around the microtubules were seen along the edges of cells in root apices of Azolla pinnata R.Br. (viewing the cells as polyhedra with faces, vertices and edges). They are best developed after cytokinesis has been completed, when the daughter cells are reinstating their interphase arrays of microtubules. They are not confined to edges made by the junction of new cell plates with parental walls, but occur also along older edges. Similar matrices and vesicles are seen amongst phragmoplast microtubules and where pre-prophase bands intersect the edges of cells. It is suggested that the complexes participate in the development of cortical arrays of microtubules. The observations are combined with others, made on pre-prophase bands and on the substructure of cortical arrays lying against the faces of cells, to develop an hypothesis on the development of cortical microtubules, summarised below: Microtubules are nucleated along the edges of cells, at first growing in unspecified orientations and then becoming bridged to the plasma membrane. Parallelism of microtubules in the arrays arises by inter-tubule cross-bridging. Lengths of microtubule are released from, or break off, the nucleating centres and are moved out onto the face of the cell by intertubule and tubule-membrane sliding, thus accounting for the presence there of short tubules with randomly placed terminations. The nucleating zones along cell edges might have vectorial properties, and thus be able to control the orientation of the microtubules on the different faces of the cell. Also, localised activation could generate localised arrays, especially pre-prophase bands in specified sites and planes. Two possible reasons for the spatial restriction of nucleation to cell edges are considered. One is that the geometry of an edge is itself important; the other is that along most cell edges there is a persistent specialised zone, inherited at cytokinesis by the daughter cells when the cell plate bisects the former pre-prophase-band zone.  相似文献   

20.
M. E. Galway  A. R. Hardham 《Protoplasma》1986,135(2-3):130-143
Summary Microtubule reorganization and cell wall deposition have been monitored during the first 30 hours of regeneration of protoplasts of the filamentous green algaMougeotia, using immunofluorescence microscopy to detect microtubules, and the cell-wall stain Tinopal LPW to detect the orientation of cell wall microfibrils. In the cylindrical cells of the alga, cortical microtubules lie in an ordered array, transverse to the long axis of the cells. In newly formed protoplasts, cortical microtubules exhibit some localized order, but within 1 hour microtubules become disordered. However, within 3 to 4 hours, microtubules are reorganized into a highly ordered, symmetrical array centered on two cortical foci. Cell wall synthesis is first detected during early microtubule reorganization. Oriented cell wall microfibrils, co-aligned with the microtubule array, appear subsequent to microtubule reorganization but before cell elongation begins. Most cells elongate in the period between 20 to 30 hours. Elongation is preceded by the aggregation of microtubules into a band intersecting both foci, and transverse to the incipient axis of elongation. The foci subsequently disappear, the microtubule band widens, and microfibrils are deposited in a band which is co-aligned with the band of microtubules. It is proposed that this band of microfibrils restricts lateral expansion of the cells and promotes elongation. Throughout the entire regeneration process inMougeotia, changes in microtubule organization precede and are paralleled by changes in cell wall organization. Protoplast regeneration inMougeotia is therefore a highly ordered process in which the orientation of the rapidly reorganized array of cortical microtubules establishes the future axis of elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号