首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have determined the dose-response of 1,25-dihydroxyvitamin D-3 (1,25-(OH)2D3) on the intracellular free calcium-ion concentration ([Ca2+]i) in the osteoblastic osteosarcoma cells, ROS 17/2.8, using 19F-NMR and the intracellular divalent cation indicator, 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid (5F-BAPTA). The dose-response demonstrated an inverted U-shaped relationship with maximal elevation of [Ca2+]i at doses of 1 to 10 nM 1,25-(OH)2D3. At 10 nM, 1,25-(OH)2D3 elevated the [Ca2+]i from a control level of 118 +/- 4 nM to a peak value of 237 +/- 8 nM within 40 min. 1,25-(OH)2D3 also increased the initial rate of Ca2+ influx into ROS 17/2.8 cells, measured by 45Ca uptake, with a dose-response relationship which paralleled its effect on [Ca2+]i. Treatment of ROS 17/2.8 cells with Pb2+ at 1 and 5 microM significantly increased [Ca2+]i but significantly reduced the 1,25-(OH)2D3-induced elevation of [Ca2+]i. Simultaneous treatment of naive cells with 1,25-(OH)2D3 and Pb2+ produce little reduction of 1,25-(OH)2D3-induced 45Ca uptake while 40 min treatment with Pb2+ before addition of 1,25-(OH)2D3 significantly reduced the 1,25-(OH)2D3-induced increase in 45Ca influx. These findings suggest that Pb2+ acts by inhibiting 1,25-(OH)2D3-activation of Ca2+ channels and interferes with 1,25-(OH)2D3 regulation of Ca2+ metabolism in osteoblastic bone cells.  相似文献   

2.
The effect of 1,25 (OH)2 vitamin D3 on basal 45Ca uptake was examined in vascular smooth muscle cells cultured from mesenteric arteries of spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) normotensive rats. Basal uptake of 45Ca was significantly greater in myocytes of WKY than SHR at 5, 10, 30 and 60 min incubation with the isotope. Incubation with 1 ng/ml 1,25 (OH)2 vitamin D3 for 48 hr increased basal 45Ca uptake between 1-10 min in SHR and between 5-10 min in WKY. The dose-response relationship indicated that cells from both strains are equally sensitive to the calciotropic effects of 1,25 (OH)2 vitamin D3 with half-maximal stimulation occurring at approximately 0.3-0.4 ng/ml. In cells of both strains maximal stimulation of 45Ca uptake was achieved only after a 12-24 hr period of incubation with hormone and pretreatment with cycloheximide inhibited 1,25 (OH)2 vitamin D3-enhanced 45Ca uptake. Although 45Ca binding by extracellular matrix material was significantly greater in WKY than SHR, 1,25 (OH)2 vitamin D3 had no effect on the amount of matrix 45Ca binding in either strain. These results suggest that 1,25 (OH)2 vitamin D3 induces an increase in intracellular protein synthesis that results in enhanced 45Ca uptake. The similar responses of the two strains indicate that hypertensive smooth muscle is not more sensitive to 1,25 (OH)2 vitamin D3 and the Ca2+ response is a general property of vascular muscle.  相似文献   

3.
1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) increases synthesis of heat shock proteins in monocytes and U937 cells and protects these cells from thermal injury. We examined whether 1,25-(OH)2D3 would also modulate the susceptibility of U937 cells to H2O2-induced oxidative stress. Cell viability was assessed by trypan blue exclusion and [3H]thymidine incorporation into DNA. Prior incubation for 24 h with 1,25-(OH)2D3 (25 pM or higher) unexpectedly increased H2O2 toxicity. Since cellular Ca2+ may be a mediator of cell injury we investigated effects of altering extracellular Ca2+ ([Ca2+]e) on 1,25-(OH)2D3-enhanced H2O2 toxicity as well as effects of 1,25-(OH)2D3 and H2O2 on cytosolic free Ca2+ concentration ([Ca2+]f). Basal [Ca2+]f in medium containing 1.5 mM Ca as determined by fura-2 fluorescence was higher in 1,25-(OH)2D3-pretreated cells than control cells (137 versus 112 nM, P less than 0.005). H2O2 induced a rapid increase in [Ca2+]f (to greater than 300 nM) in both 1,25-(OH)2D3-treated and control cells, which was prevented by a reduction in [Ca2+]e to less than basal [Ca2+]f. The 1,25(OH)2D3-induced increase in H2O2 toxicity was also prevented by preincubation with 1,25-(OH)2D3 in Ca2+-free medium or by exposing the cells to H2O2 in the presence of EGTA. Preexposure of cells to 45 degrees C for 20 min, 4 h earlier, partially prevented the toxic effects of H2O2 particularly in 1,25-(OH)2D3-treated cells, even in the presence of physiological levels of [Ca2+]e. Thus 1,25-(OH)2D3 potentiates H2O2-induced injury probably by increasing cellular Ca2+ stores. The 1,25-(OH)2D3-induced amplification of the heat shock response likely represents a mechanism for counteracting the Ca2+-associated enhanced susceptibility to oxidative injury due to 1,25-(OH)2D3.  相似文献   

4.
A slowly inactivating inward calcium current was identified in the rat osteosarcoma cell line ROS 17/2.8 using a combination of ion flux and electrophysiological techniques. Voltage dependence, dihydropyridine sensitivity, divalent cation selectivity, and single channel properties identified this current as a high threshold, "L-type" calcium current. Ion flux experiments using 45Ca2+ confirmed that calcium uptake through these channel represents a major pathway for calcium entry into osteosarcoma cells. In resting cells, i.e. at negative membrane potentials, stimulation of both calcium current and rapid 45Ca2+ influx could be elicited by concentrations of 1,25-(OH)2-vitamin D3 between 0.1 and 3 nM. At these concentrations, 1,25-(OH)2-vitamin D3 shifted the threshold for activation of inward calcium current to more negative potentials. At higher concentrations (5-10 nM), inhibitory effects became predominant. These opposing effects are functionally similar to those of the dihydropyridine BAY K 8644. Other vitamin D3 metabolites (25-(OH)-D3 and 24,25-(OH)2-D3) exhibited less potent stimulatory effects and greater inhibition of calcium current than 1,25-(OH)2-D3. These results suggest that (i) vitamin D3 acts as a potent modulator of calcium channel function in osteosarcoma cells, and (ii) intracellular Ca2+-dependent signaling processes may be affected acutely by physiological concentrations of vitamin D3 metabolites.  相似文献   

5.
The acute effects of 1,25-Dihydroxy-vitamin D3 [1,25(OH)2D3] on the concentration of cytoplasmic ionized calcium [Ca2+] of cultured rat mesangial cells were studied at the single cell level by microspectrofluorometry of fura-2-loaded cells. Addition of 1,25(OH)2D3 produced an immediate increase of [Ca2]+. This rise in [Ca2+] was sustained and similar to that caused by the Ca2+ channel agonist BAY K 8644. Comparable changes were also observed in cultured human mesangial cells. The effects of the hormone (10 (-10)-10(-7) M) were dose-dependent (62% and 285%). Only 30-40% of the cells responded to stimulation with 1,25(OH)2D3. 25OHD3 also increased Ca2+ whereas 24,25(OH)2D3 and 1aOHD3 were inactive. Addition of 1 mM CoCl2 or 2-5 microM nifedipine largely blocked the effects of 1,25(OH)2D3 suggesting the involvement of Ca2+ channel activation in the rapid 1,25(OH)2D3-induced increase in mesangial cell [Ca2+]. 45Ca uptake studies are consistent with This interpretation.  相似文献   

6.
1,25-Dihydroxyvitamin D-3 (1,25(OH)2D3) has been shown to increase Ca2+ uptake readily in skeletal muscle through a dihydropyridine-sensitive pathway, cAMP levels and adenylate cyclase activity. In the present study, fluoride (F-), a potent guanine nucleotide binding protein (G protein) stimulator, rapidly increases vitamin D-deficient skeletal muscle Ca2+ uptake in a dose-dependent manner and with a similar time-course as 1,25(OH)2D3. The increment is detected within 1 min (15%) and steadily increases up to 15 min (60%). The effects of 1,25(OH)2D3 and F- are also observed in muscle from normal, vitamin D-replete chicks. AlCl3, which is required for G protein stimulation by F-, potentiates the effects of F-, Ca2+ uptake in 1,25(OH)2D3-dependent muscle is potentiated by F- and, analogous to the hormone, the effects of F- can be suppressed by Ca(2+)-channel antagonists. Direct exposure of microsomal membranes to 1,25(OH)2D3 reduces the specific binding of [gamma-35S]GTP to the membranes 40%. Pretreatment of muscle with Bordetella pertussis toxin (PTX), known to inhibit Gi, or with cholera toxin (CTX), known to stimulate Gs, produces an acute elevation of muscle Ca2+ uptake. 1,25(OH)2D3 potentiates CTX, but has no additional effect on PTX-dependent Ca2+ uptake. These results indicate that an interaction with an inhibitory G protein coupled to adenylate cyclase may be part of the mechanism by which 1,25(OH)2D3 increase Ca2+ uptake through regulation of Ca(2+)-channel gating by a cAMP-dependent pathway in skeletal muscle.  相似文献   

7.
The effect of several regulators of whole animal Ca2+ homeostasis on 45Ca uptake by primary cultures of aortic myocytes isolated from spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats was examined. Exposure of confluent cells to 1.0, 1.25 or 1.50 mM ionized Ca2+ in serum-free medium for seven days resulted in increased 45Ca uptake at the higher concentrations of Ca2+ in cells of the SHR but not the WKY. 1,25 (OH)2 vitamin D3 (1 ng/ml) for 7 days caused enhanced influx in cells from both the SHR and WKY while parathyroid hormone (1-34) (1 ng/ml) was without effect. The data indicate that humoral factors that serve to regulate whole animal Ca2+ homeostasis may also play a role in the regulation of Ca2+ metabolism of the vascular smooth muscle cell.  相似文献   

8.
A fluorescent Ca2+ indicator, acetoxymethyl Quin2, was used to quantify changes in the cytosolic free calcium concentration ([Ca2+]i) of confluent mouse osteoblasts. 1,25 - Dihydroxycholecalciferol (1,25 - (OH)2D3, 10-100 pM), 25-hydroxycholecalciferol (25-(OH)D3, 10-100 nM), parathyroid hormone (PTH(1-84), 0.1-10 nM), and prostaglandin E2 (PGE2, 10-1000 nM) all induced immediate (t less than 15 s) transient increases in [Ca2+]i, from a basal level of 135 +/- 8 nM to levels of 179-224 nM. These increases rapidly returned to a plateau approximately 10% higher than the basal level. 24,25-Dihydroxycholecalciferol (24,25-(OH)2D2, 0.1-10 nM) induced a rapid increase in [Ca2+]i which remained elevated for 5 min before decreasing. The 1,25-(OH)2D3- and PTH-induced spikes were abolished by the prior addition of EGTA and Ca2+ entry blockers (verapamil, nifedipine, 1 microM) while the responses to 25-(OH)D3, 24,25-(OH)2D3, and PGE2 were unaffected. Addition of 1,25-(OH)2D3 + EGTA or PTH + EGTA caused enhanced Ca efflux. Addition of drugs which interfere with calcium sequestration by the endoplasmic reticulum (ER) (caffeine, 4 mM; 8-(diethyl-amino)-octyl 3,4,5-trimethoxybenzoate HCl, 0.5 mM) or mitochondria (antimycin, 10 microM; oligomycin, 5 microM) showed that 25-(OH)D3 and PGE2 mainly mobilized Ca2+ from ER. 1,25-(OH)2D3 and bovine PTH caused a transient increase in [Ca2+]i, 70% of which resulted from Ca2+ influx from outside the cells and 30% by release from the ER. The [Ca2+]i increase induced by 24,25-(OH)2D3 included a 30% contribution from the ER and 70% from the mitochondria.  相似文献   

9.
1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) induces monocytic differentiation of the human promyelocytic leukemia line, HL-60, and enhances Ca2+ transport in target cells of the mineral metabolism system. Hence, we determined whether the steroid's maturational effect on HL-60 involves alterations of intracellular calcium [( Ca2+]i). We found that, as detected by indo-1 fluorescence, [Ca2+]i increases in a slow tonic manner from 99 +/- 11 nM in virgin HL-60 to 182 +/- 19 nM (p less than 0.001) in those treated with 1,25-(OH)2D3 for 24 h. The first apparent rise in [Ca2+]i occurs at between 6 and 12 h and parallels expression of alpha-thrombin and N-formyl-methionyl-leucyl-phenylalanine (fMLP) receptors. This increase in [Ca2+]i is derived from extracellular calcium as its reduction abolishes the effect. The increase in [Ca2+]i is associated with an increase in inositol trisphosphate-stimulated Ca2+ flux from intracellular stores. Interestingly, 1,25-(OH)2D3-mediated HL-60 differentiation as manifest by expression of the macrophage-specific antigen, 63D3, is not blocked by low extracellular calcium. In contrast, the fMLP-induced superoxide ion generation is diminished if the increase in [Ca2+]i is prevented. Furthermore, fMLP-stimulated signal transduction is also reduced by limiting the stimulation of [Ca2+]i during 1,25-(OH)2D3 treatment. Thus, although differentiation of HL-60 to the monocytic phenotype by 1,25-(OH)2D3 is Ca2+-independent, expression of response to regulatory stimuli requires priming of cellular Ca2+ stores. The latter appears to be induced by 1,25-(OH)2D3 via stimulated Ca2+ entry through the plasma membrane.  相似文献   

10.
Demonstrating 1,25(OH)2D3-stimulated calcium uptake in isolated chick intestinal epithelial cells has been complicated by simultaneous enhancement of both uptake and efflux. We now report that in intestinal cells of adult birds, or those of young birds cultured for 72 h, 1,25(OH)2D3-stimulates 45Ca uptake to greater than 140% of corresponding controls within 3 min of addition. Such cells have lost hormone-stimulated protein kinase C (PKC) activity, believed to mediate calcium efflux. To further test this hypothesis, freshly isolated cells were preincubated with calphostin C, and calcium uptake monitored in the presence or absence of steroid. Only cells treated with the PKC inhibitor demonstrated a significant increase in 45Ca uptake in response to 1,25(OH)2D3, relative to corresponding controls. In addition, phorbol ester was shown to stimulate efflux, while forskolin stimulated uptake. To further investigate the mechanisms involved in calcium uptake, we assessed the role of TRPV6 and its activation by beta-glucuronidase. beta-Glucuronidase secretion from isolated intestinal epithelial cells was significantly increased by treatment with 1,25(OH)2D3, PTH, or forskolin, but not by phorbol ester. Treatment of cells with beta-glucuronidase, in turn, stimulated 45Ca uptake. Finally, transfection of cells with siRNA to either beta-glucuronidase or TRPV6 abolished 1,25(OH)2D3-enhanced calcium uptake relative to controls transfected with scrambled siRNA. Confocal microscopy further indicated rapid redistribution of enzyme and calcium channel after steroid. 1,25(OH)2D3 and PTH increase calcium uptake by stimulating the PKA pathway to release beta-glucuronidase, which in turn activates TRPV6. 1,25(OH)2D3-enhanced calcium efflux is mediated by the PKC pathway.  相似文献   

11.
The effects of the three dihydropyridine calcium channel agonists (+/-)BAY K 8644, (+)202-791 and (+/-)CGP 28392 on 45Ca++ uptake were studied in cultures of rabbit aortic smooth muscle cells. At 10(-7) M each agonist enhanced 45Ca++ uptake in 15-50 mM K+ but had no effect on the basal 45Ca++ uptake at 5 mM K+. At the uptake threshold of 15 mM K+ each agonist potentiated 45Ca++ uptake in a dose-dependent manner with half maximal effects at 2.4 nM for (+/-)BAY K 8644, 22 nM for (+)202-791 and 18 nM for (+/-)CGP 28392. The agonists showed no significant antagonistic activity. Responses were antagonized competitively by nifedipine and non-competitively by (+/-)D-600. The 45Ca++ uptake dose-response curves and the half maximal effects of the three agonists were over the same range of concentrations as their inhibition of [3H]nitrendipine binding to rat ventricular receptor membrane preparations. The data suggest that these cells mimic the calcium uptake by the intact aorta better than commercial vascular smooth muscle lines or cardiac cells.  相似文献   

12.
We have determined the dose-response of 1,25-dihydroxyvitamin D-3 (1,25-(OH)2D3) on the intracellular free calcium-ion concentration ([Ca2+1]i) in the osteoblastic osteosarcoma cells, ROS 17/2.8, using 19F-NMR and the intracellular divalent cation indicator, 1,2-bis(2-amino-5-fluorephenoxy)ethane-N, N, N′, N′-tetraacetic acid (5F-BAPTA). The dose-response demonstrated an inverted U-shaped relationship with maximal elevation of [Ca2+]i at doses of 1 to 10 nM 1,25-(OH)2D3. At 10 nM, 1,25-(OH)2D3 elevated the [Ca2+]i from a control level of 118±4 nM to a peak value of 237±8 nM within 40 min. 1,25-(OH)2D3 also increased the intial rate of Ca2+ influx into ROs 17/2.8 cells, measured by 45Ca uptake, with a dose-response relationship which paralleled its effects on [Ca2+]i. Treatment of ROS 17/2.8 cells with Pb2+ at 1 and 5 μM significantly increased [Ca2+]i but significantly reduced the 1,25-(OH)2D3-induced elevation of [Ca2+]i. Simultaneous treatment of naive cells with 1,25-(OH)2D3 and Pb2+ produce little reduction of 1,25-(OH)2D3 and Pb2+ produce little reduction of 1,25-(OH)2D3-induced 45Ca uptake while 40 min treatment with Pb2+ before addition of 1,25-(OH)2D3 significantly reduced the 1,25-(OH)2D3-induced increase in 45Ca influx. These findings suggest that Pb2+ acts by inhibiting 1,25-(OH)2D3-activation of Ca2+ channels and interferes with 1,25-(OH)2D3 regulation of Ca2+ metabolism in osteoblastic bone cells.  相似文献   

13.
14.
The present study evaluates in osteosarcoma cells, the effects of a calcium channel inhibitor nicardipine in 24-hydroxylase activity and 45Ca desaturation curve in presence of 1,25-dihydroxycholecalciferol (1,25(OH)2D3). This sterol induced an increase in 24-OHase activity and 45Ca fluxes. Nicardipine reversed the effect of 1,25(OH)2D3 on 45Ca fluxes but reinforced the enhancement of the 24-OHase activity. The fact that the effects of 1,25(OH)2D3 were reduced by cycloheximide support the hypothesis of a de novo protein synthesis. Our study has allowed us to dissociate the effects of 1,25(OH)2D3 on 24-OHase enhancement from those on Ca2+ transport.  相似文献   

15.
1,25-dihydroxyvitamin D3[1,25(OH)2D3] effects on bone resorption in organ culture and on 45Ca2+ efflux rates in bone cells were measured in presence of a calcium channel inhibitor, diltiazem. Though, diltiazem reduced the 45Ca release from mice calvaria it did not act at the same Ca compartment as 1,25(OH)2D3 to alter Ca2+ flux parameters. It therefore seems difficult to hypothesize a simple relationship between bone resorption and Ca2+ movements in bone cells.  相似文献   

16.
To better understand the initial steps in the induction of intestinal Ca2+ transport by 1,25-dihydroxycholecalciferol [1,25(OH)2D3], we studied the early subcellular localization of 1,25(OH)2D3 in rat intestine. Vitamin D-deficient rats received 300 pmol of 1,25(OH)2[3H]D3 intravenously at 5 min to 4h before being killed. Cells homogenized in buffer of I = 90 mmol/litre were fractionated by centrifugation into a crude nuclear pellet, purified nuclei, Golgi and basal-lateral membranes, cytosol and a post-nuclear pellet. Nuclear purification was established by biochemical and morphological criteria and gave a yield of 32 +/- 2% (mean +/- S.E.M.; n = 21). Although re-establishment of Ca2+ uptake by Golgi is one of the earliest reported intestinal responses to 1,25(OH)2D3, no direct localization of 1,25(OH)2D3 to Golgi was detected. Purified nuclei had the highest specific radioactivity at all times studied, with nuclear localization detectable at 5 min and peak nuclear uptake at 1 h. Relative specific radioactivity of nuclei to cytosol increased from 5 min to 30 min, at which time equilibrium between cytosol and nucleus appeared to be attained. Nuclear uptake occurred in all cells from villus to crypt. Of total nuclear binding 10% was resistant to high ionic strength buffer (I = 365 mmol/litre); peak nuclear uptake was observed at 30 min in this buffer. This tight binding may represent the active fraction of 1,25(OH)2D3. These results indicate that localization of 1,25(OH)2D3 to rat intestinal nuclei precedes the observed Golgi-membrane effects and suggest the existence of high-affinity nuclear 1,25(OH)2D3-binding sites.  相似文献   

17.
Several studies have demonstrated that excess of vitamin D3 is toxic particularly to vascular tissues. A notable pathological feature is arterial calcification. The nature of the toxic metabolite in hypervitaminosis D and the pathogenesis of arterial calcification are not clearly understood. The present study was undertaken to explore whether arterial calcification is a sequel of increased calcium uptake by arterial smooth muscle mediated by up regulation of vitamin D receptor in the cells in response to elevated circulating levels of vitamin D3 in serum. The experimental study was performed in 20 New Zealand white female rabbits aged 6 months. Animals in the test group were injected 10,000 IU of cholecalciferol intramuscularly twice a week for one month. Six control animals were given intra-muscular injections of plain cottonseed oil. Animals were sacrificed and aortas were examined for pathological lesions, 1,25-dihyroxyvitamin D3 (1,25(OH)2 D3) receptor levels and 45Ca uptake in smooth muscle cells. Serum samples collected at intervals were assayed for levels of 25-OH-D3 and calcium. The results showed that in animals given injections of cholecalciferol, serum levels of 25-OH-D3 were elevated. In four of these animals calcification and aneurysmal changes were seen in the aorta. Histological lesions comprised of fragmentation of elastic fibers as well as extensive loss of elastic layers. 1,25(OH)2 D3 receptor levels were up regulated and 45Ca uptake enhanced in aortas of animals which were given excessive vitamin D3. The evidences gathered suggest that excess vitamin D is arteriotoxic and that the vitamin induces arterial calcification through up regulation of 1,25(OH)2D3 receptor and increased calcium uptake in smooth muscle cells of the arteries.  相似文献   

18.
A variety of intestinal cell organelles and proteins have been proposed to mediate 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)-stimulated calcium absorption. In the present study biochemical analyses were undertaken to determine the subcellular localization of 45Ca after calcium transport in vivo in ligated duodenal loops of vitamin D-deficient chicks injected with 1.3 nmol of 1,25-(OH)2D3 or vehicle 15 h prior to experimentation. Separation of Golgi, mitochondria, basal lateral membrane, and lysosome fractions in the epithelial homogenates was achieved by differential sedimentation followed by centrifugation in Percoll gradients and evaluation of appropriate marker enzyme activities. Both vitamin D-deficient and 1,25-(OH)2D3-treated chicks had the highest levels of 45Ca-specific activity in lysosomal fractions. The lysosomes were also the only organelles to exhibit a 1,25-(OH)2D3-mediated difference in calcium content, increasing to 138% of controls. Lysosomes prepared from 1,25-(OH)2D3-treated chicks also contained the greatest levels of immunoreactive calbindin-D28k (calcium-binding protein). Chloroquine, a drug known to interfere with lysosomal function, was tested and found to inhibit 1,25-(OH)2D3-stimulated intestinal calcium absorption. Neither 1,25-(OH)2D3 nor chloroquine affected [3H]2O transport. In additional experiments, microsomal membranes (105,000 X g pellets) were subjected to gradient centrifugation. The highest levels of 45Ca-specific activity and calcium-binding protein in material from 1,25-(OH)2D3-treated chicks were found in fractions denser than endoplasmic reticulum and may represent endocytic vesicles. In studies on intestinal mucosa of 1,25-(OH)2D3-treated birds fractionated after 30 min of exposure to lumenal Ca2+ or Ca2+ plus chloroquine, 45Ca was found to accumulate in lysosomes and putative endocytic vesicles, relative to controls. A mechanism involving vesicular flow is proposed for 1,25-(OH)2D3-mediated intestinal calcium transport. Endocytic internalization of Ca2+, fusion of the vesicles with lysosomes, and exocytosis at the basal lateral membrane complete the transport process.  相似文献   

19.
20.
We have recently shown the presence of receptors for 1,25-dihydroxyvitamin D3 and that 1,25-dihydroxyvitamin D3 stimulates Ca-ATPase in vascular smooth muscle cells presumably via receptor mediated mechanism. These data suggest that the sterol may directly be involved in the regulation of cellular calcium homeostasis. To further define action of vitamin D in smooth muscle cells, we studied effect of the sterol on cellular uptake of calcium. 1,25-dihydroxyvitamin D3 stimulated 45Ca2+ uptake by cultured cells, A7r5, derived from fetal rat aorta, when the cells were incubated with the sterol for 18 hr. The effect was dose-dependent at 10(-10) to 10(-9) M, and three orders of magnitude higher concentration of 25-hydroxyvitamin D3 or 24,25-dihydroxyvitamin D3 was needed to obtain similar effects. Furthermore, the effect of 1,25-dihydroxyvitamin D3 was abolished by cycloheximide (10(-5) M), a protein synthesis inhibitor. These data clearly suggest that 1,25-dihydroxyvitamin D3 may directly regulate cellular calcium homeostasis in vascular smooth muscle cells presumably via receptor mediated mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号