首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new minor carotenoid, β-citraurin epoxide (3-hydroxy-5,6-epoxy-5,6-dihydro-8′-apo-β-caroten-8′-al) and several isomers of violaxanthin (5,6,5′,6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-caroten-3,3′-diol) have been identified in Valencia orange peel. The previously reported occurrence of apo-10′-violaxanthal (3-hydroxy- 5,6-epoxy-5,6-dihydro-10′-apo-β-caroten-10′-al) and apo-12′-violaxanthal (3-hydroxy-5,6-epoxy-5,6-dihydro- 12′-apo-β-caroten-12′-al) has been confirmed, and their syntheses are described. The quantitative determination of the carotenoids has also been performed.  相似文献   

2.
《Phytochemistry》1986,25(12):2837-2840
Two new carotenoids, cucurbitaxanthin A [(3S,5R,6,R3′R)-3,6-epoxy-5,6-dihydro-β,β-carotene-5,3′-diol] and cucurbitaxanthin B [(3S,5R,6R,3′S,5′R,6′S)-3,6,5′,6′-diepoxy-5,6,5′,6′-tetrahydro-β-β-carotene-5,3′-diol] have been isolated from the pumpkin Cucurbita maxima.  相似文献   

3.
The absolute configurations of heteroxanthin ((3S,5S,6S,3′R)- 7′,8′-didehydro-5,6-dihydro-β,β-carotene-3,5,3′,6′-tetrol) ex Euglena gracilis and of diadinoxanthin ((3S,5R,6S,3′R)-5,6-epoxy-7′,8′-didehydro-5,6-dihydro-β,β-carotene-3,3′-diol) from the same source have been established by chemical reactions, hydrogen bonding studies, 1H NMR and CD. Two previously unknown carotenoids (artefacts?) from Trollius europaeus, assigned the structures (3S,5S,6S,3′S,5′R,6′R)-6,7-didehydro-5,6,5′,6′-tetrahydro-β,β -carotene-3,5,6,3′,5′-pentol and its 5R epimer, served as useful models.  相似文献   

4.
A new cis isomer in the violaxanthin series has been isolated from the blossoms of Viola tricolor and identified by MS, IR and UV as the central-monocis form. It was converted to all-trans-violaxanthin by stereomutation. The CD correlation between 15-cis-violaxanthin and natural violaxanthin (5,6,5′,6′-diepoxy-5,6,5′,6′-tetrahydro- β,β-caroten-3,3′-diol) provided the basis for assignment of the absolute configurations 3S, 5R, 6S, 3′S, 5′R, 6′S. Trans—cis isomerization of all-trans-violaxanthin also resulted in 15- cis-violaxanthin. In addition a quantitative determination of the carotenoids was conducted.  相似文献   

5.
A new trihydroxyl carotenoid has been isolated from the yeast Rhodotorula aurantiaca (Saito) Lodder C.B.S. 317 and identified as 2-hydroxyplectaniaxanthin (3′,4′-didehydro,1′,2′-dihydro-β, ψ-caroten-2,1′,2′-triol). Its m.p., partition coefficient, Rf, extinction coefficient, ms and NMR spectra are reported. Since the hydroxyl group at C-2 of the β-ionone ring is unusual, a possible mechanism for the biosynthesis of this carotenoid has been proposed.  相似文献   

6.
The chirality of eschscholtzxanthin (all-trans (3S,3′S)-4′,5′-didehydro-4,5′-retro-β,βcarotene-3,3′-diol) at 3,3′ was assigned from the CD correlation of the natural material and the semi-synthetic carotenoid prepared by (NBS-dehydrogenation of natural zeaxanthin ((3R,3′R)-β,β-carotene-3,3′-diol). The δ6(6′)-trans configuration followed from 1H NMR evidence, including nuclear Overhauser experiments with rhodoxanthin, retrodehydro-carotene (4′,5′-didehydro-4,5′-retro-β,β-carotene) and smaller retro model compounds revealing a general preference for the δ6-trans configuration in retro compounds. Biosynthetic considerations are made.  相似文献   

7.
The structure of some carotenoids of Valencia orange juice were elucidated by chemical tests and MS of the free pigments and their derivatives. A new apocarotenal was shown to be 3-hydroxy-5,8-epoxy-5,8-dihydro-8′-apo-β-caroten-8′-al. Two UV-fluorescent apocarotenols found recently in avocado were also present. For the pigments previously designated trollixanthin and trollichrome, the new structures 5,6-dihydro-β,β-carotene-3-3′,5,6-tetrol and 5,8-epoxy-5,8,5′,6′-tetrahydro-β,β-carotene-3,3′,5′,6′-tetrol are assigned, both containing a trihydroxylated ring as in heteroxanthin.  相似文献   

8.
Abandonment of the name eloxanthin is proposed. The principal carotenoids in various species of Elodea were (3R, 3′R, 6′R)-lutein (β,ε-carotene-3, 3′-diol) and β, β-carotene. The minor pigments were neoxanthin-X (5′, 6′-epoxy-6, 7-didehydro-5, 6, 5′, 6′-tetrahydro-β, β-carotene-3, 5, 3′-triol), 9′-cis-neoxanthin- X, 9- and 13-cis-violaxanthin (5, 6, 5′, 6′-diepoxy-5, 6, 5′, 6′-tetrahydro-β, β-carotene-3, 3′-diol), antheraxanthin (5, 6-epoxy-5, 6-dihydro-β, β-carotene-3, 3′-diol), neolutein A (13- or 13′-cis-lutein) and neolutein B (9- or 9′-cis-lutein). All attempts to isolate eloxanthin failed.  相似文献   

9.
鬼针草中一个新的查耳酮甙   总被引:5,自引:0,他引:5  
从鬼针草BidenspilosaL .地上部分的丙酮提取物中 ,分离鉴定了 1 8个化合物 ,其中包括一个新的查耳酮甙类化合物 (α,3,2′,4′ tetrahydroxy 2′ O β D glucopyranosylchalcone,2 )。其它化合物分别鉴定为butein (1 ) ,okanin 4 methylether 3′ O β glucoside (3) ,sulfuretin (4) ,6 ,7,3′,4′ tetrahydroxyaurone (5) ,海生菊苷 (maritimein ,6) ,(Z ) 6 O (6″ acetyl β D glucopyr anosyl) 6 ,7,3′,4′ tetrahydroxy aurone (7) ,(Z ) 6 O (4″,6″ diacetyl β D glucopyranosyl) 6 ,7,3′,4′ tetrahydroxy aurone (8) ,(Z ) 6 O (3″,4″,6″ triacetyl β D glucopyranosyl) 6 ,7,3′,4′ tetrahydroxy aurone (9) ,木犀草素 (luteolin ,1 0 ) ,槲皮素 (quercetin,1 1 ) ,异槲皮苷 (iso quercitrin,1 2 ) ,芦丁 (rutin,1 3) ,黄芪苷 (astragalin,1 4 ) ,quercetin 3,4′ dimethylether 7 O rutinoside (1 5) ,反式丁烯二酸 (1 6) ,2 β D glucopyranosyloxy 1 hydroxy trideca 3 ,5,7,9,1 1 pentayne (1 7)和 3 β D glucopyranosyloxy 1 hydroxy 6 (E ) tetradecene 8,1 0 ,1 2 triyne (1 8)。  相似文献   

10.
The carotenoid composition of the myxobacterium Chondromyces apiculatus is reported. A new acyclic carotenoid glucoside ester was isolated and its structure determined as 1′-glucosyloxy-3′,4′-didehydro-1′,2′-dihydro-ψ,ψ-carotene monoester.  相似文献   

11.
The structural elucidation of the minor carotenoid sulfates from the marine sponge lanthella basta is discussed in context with the structure assigned to the major sulfate bastaxanthin (c; 3,19,17′-trihydroxy-7,8-didehydro-β-κ-carotene-3′,6′-dione 3-sulfate. Plausible structures are assigned to other bastaxanthins (b,b2, c2, d, e and f) on the basis of electroic, IR, 1H NMR, mass and CD spectra, electrophoretic behaviour, chemical derivatization and enzymatic or acid-catalysed hydrolysis. The minor sulfates represent structural variation in the cylopentane end group with different oxidation levels. Bastaxanthol b (desulfated bastaxanthin b) was a minor carotenoid constituent of l. basta. Including tentative chiralities, the structures favoured for the bastaxanthins are: c2, (3R,3′R, 5′R)-3,19,3′-trihydroxy-7,8-didehydro-β,κ-caroten-6′-one 3-sulfate; b2, (3R,3′R,5′R)-3, 19-dihydroxy-7,8-didehydro-β,κ- dione 3-sulfate; b, (3R,1′R, 5′R)-3, 19-dihydroxy 3′,6′-dioxo-7,8-didehydro-β,κ-caroten-17′-al 3-sulfate; d. (3R,1′R,3′R,5′R)-3, 19,3′,17′-tetrahydroxy 7,8 didehydro-β,κ-caroten-6′-one 3-sulfate; e. hydrogen (3R,1′R,5′R)-3, 19-dihydroxy-3′,6′-dioxo-7,8-didehydro-β,κ-caroten-17′-oate 3 sulfate (?); and f, hydrogen (3R.1′R,3′R,5′R)-3,19,3′-trihydroxy-7,8-didehydro-6′-oxo-β,κ-caroten-17′-oate 3-sulfate; for bastaxanthol b(3R.1′R.5′R)-3, 19-dihydroxy-3′,6′-dioxo-7,8-didehydro-β,κ-caroten-17′-al. The bastaxanthins are considered as metabolic products of l. basta, diadinoxanthin of phytoplankton origin representing a plausiable precursor.  相似文献   

12.
(±)-(2Z,4E)-5-(1′,2′-epoxy-2′,6′,6′-trimethylcyclohexyl)-3-methyl-2,4-pentadienoic acid was metabolized by Cercospora cruenta, which has the ability to produce (+)-abscisic acid (ABA), to give (±)-(2Z,4E)-xanthoxin acid, (±)-(2Z,4E)-5′-hydroxy-1′,2′-epoxy-1′,2′-dihydro-β-ionylideneacetic acid, (±)-1′,2′-epoxy-1′,2′-dihydro-β-ionone and trace amounts of ABA.  相似文献   

13.
A series of oxygenated carotenoids has been isolated from tomatoes. Two of these compounds have been identified, by comparison of their chromatographic and spectroscopic properties with those of semisynthetic samples, as epoxides of lycopene (1,2-epoxy-1,2-dihydro-ψ,ψ-carotene and 5,6-epoxy-5,6-dihydro-ψ,ψ-carotene). The other related compounds have been identified by their chromatographic, spectroscopic and chemical properties as mutatochrome (5,8-epoxy-5,8-dihydro-β,β-carotene) and epoxides of phytoene (1,2-epoxy-1,2,7,8,11,12,7′,8′,11′,12′-decahydro-ψ, ψ-carotene), phytofluene (1,2-epoxy-1,2,7,8, 11,12,7′,8′-octahydro-ψ,ψ-carotene and 1,2-epoxy-1,2,7,8,7′,8′,11′,12′-octahydro-ψ,ψ-carotene) and ξ-carotene (1,2-epoxy-1,2,7,8,7′,8′-hexahydro-ψ,ψ-carotene). The presence in tomatoes of apo-6′-lycopenal (6′-apo-ψ-caroten-6′-al), 8′-apo-lycopenal (8′-apo-ψ-caroten-8′-al) and lycoxanthin (ψ,ψ-caroten-16-ol) has been confirmed by comparison with authentic samples.  相似文献   

14.
The water soluble portion of the aerial parts of Hypericum canariense L. yielded after acetylation the 5,7,3′4′-tetra- and 7,3′4′-triacetates of a new flavonoid 5,7,3′,4′-tetrahydroxy-3-O-β-d-(methyl 2,3,4-triacetoxypyranuronyl)-quercetin, the 3′-acetate of a new flavonoid 3′-hydroxy-5,7,4′-trimethoxy-3-O-β-d-(methyl 2,3,4-triacetoxypyranuronyl)-quercetin, the 3′-acetate and the 3′5′-diacetate of the new flavonoid 5,3′dihydroxy-7,4′-dimethoxy-3-β-d-(methyl 2,3,4-triacetoxypyranuronyl)-quercetin, the xanthone derivative mangiferin 2′,3′,4′,6′-tetraacetate and the latter's new 1,3,6,7′-tetramethoxy, 1,3,6-trimethoxy-4-acetoxy and 1,7-diacetoxy-3,6-dimethoxy analogs.  相似文献   

15.
The carotenoids are terpenoid fat-soluble pigments produced by plants, algae, and several bacteria and fungi. They are ubiquitous components of animal diets. Carotenoid cleavage oxygenase (CCO) superfamily members are involved in carotenoid metabolism and are present in all kingdoms of life. Throughout the animal kingdom, carotenoid oxygenases are widely distributed and they are completely absent only in two unicellular organisms, Monosiga and Leishmania. Mammals have three paralogs 15,15′-β-carotene oxygenase (BCO1), 9′,10′-β-carotene oxygenase (BCO2) and RPE65. The first two enzymes are classical carotenoid oxygenases: they cleave carbon‑carbon double bonds and incorporate two atoms of oxygen in the substrate at the site of cleavage. The third, RPE65, is an unusual family member, it is the retinoid isomerohydrolase in the visual cycle that converts all-trans-retinyl ester into 11-cis-retinol. Here we discuss evolutionary aspects of the carotenoid cleavage oxygenase superfamily and their enzymology to deduce what insight we can obtain from their evolutionary conservation.  相似文献   

16.
Epoxidation of methyl dehydro-β-ionylideneacetates with perbenzoic acid afforded methyl 1′, 2′-epoxy-dehydro-β-ionylideneacetates and then methyl 1′, 2′-, 3′, 4′-di-epoxy-dehydro-β-ionylideneacetates. 1′,2′-Epoxy-dehydro-β-ionone, obtained byepoxidation of dehydro-β-ionone, was treated with carbethoxymethylenetriphenlphosphorane to give ethyl 1′, 2′-epoxy-dehydro-β-ionylideneacetates. Further, sensitive photooxidation of ethyl dehydro-β-ionylidenecrotonate, followed by alkaline hydrolysis, gave 1′-hydroxy-4′-keto-α-ionylidenecrotonic acid. Growth inhibitory activities of the above compounds on rice seedlings were examined.  相似文献   

17.
1,3,5,[10]-Estratriene-3,17β-diol-6-iminooxyacetic acid (I) and fluorescein amine condense in the presence of dicyclohexylcarbodiimide to give a fluorescent derivative of estradiol: 9{p-(1′,3′,5′[10′]-Estratriene-3′,17′β-diol-6′-iminooxyacetylamino) o-carboxyphenyl}-6-hydroxy-3-isoxanthenone (II). (II) can be prepared and isolated on a micro scale by thin layer chromatography. The results show that (II) is useful as a probe for estrogen interaction with cellular receptors and with antibody to estradiol.  相似文献   

18.
Chemical investigation of the leaves and roots of Selaginella moellendorfii Hieron has resulted in the isolation and characterization of two new flavone glucosides, 7‐O‐(β‐glucopyranosyl(1→2)‐[β‐glucopyranosyl(1→6)]‐β‐glucopyranosyl)flavone‐3′,4′,5,7‐tetraol ( 1 ) and 7‐O‐(β‐glucopyranosyl(1→2)‐[β‐glucopyranosyl(1→6)]‐β‐glucopyranosyl)flavone‐4′,5,7‐triol ( 2 ), two new biflavonoids, 2,3‐dihydroflavone‐5,7,4′‐triol‐(3′→8″)‐flavone‐5″,6″,7″,4′′′‐tetraol ( 3 ) and 6‐methylflavone‐5,7,4′‐triol‐(3′→O→4′′′)‐6″‐methylflavone‐5″,7″‐diol ( 4 ), two new lignans, (7′E)‐3,5,3′,5′‐tetramethoxy‐8 : 4′‐oxyneolign‐7′‐ene‐4,9,9′‐triol ( 5 ) and 3,3′‐dimethoxylign‐8′‐ene‐4,4′,9‐triol ( 6 ), together with two known monolignans, four known lignans, and four known biflavonoids. Their structures were established by spectroscopic means and by comparison with literature values.  相似文献   

19.
Reaction of methyl 4′,6′-di-O-mesyl-β-lactoside pentabenzoate (8), synthesised via the 4′,6′-O-benzylidene derivative (6), with sodium azide in hexamethylphosphoric triamide gave three products. In addition to the required 4′,6′-diazidocellobioside (9), an elimination product, methyl 4-O-(6-azido-2,3-di-O-benzoyl-4,6-dideoxy-α-L-threo-hex-4-enopyranosyl)-2,3,6-tri-O-benzoyl-β-D-glucopyranoside (12), and an unexpected product of interglycosidic cleavage, methyl 2,3,6-tri-O-benzoyl-β-D-glucopyranoside (13), were formed. The origin of the latter product is discussed. The diazide 9 was converted into 4′,6′-diacetamido-4′,6′-dideoxycellobiose hexa-acetate (16) by sequential debenzoylation, catalytic reduction, acetylation, and acetolysis.  相似文献   

20.
Treatment of methyl β-lactoside with mesyl chloride in N,N-dimethylformamide under a variety of conditions gave complex mixtures of chlorinated products, of which nine were isolated and characterised. Chlorination at a secondary position always occurred with inversion of configuration. When the reaction was conducted at 94° for 9 days, a mixture of the 3,3′,4′,6,6′-pentachloride, the 3,3′,6,6′- and 3,4′,6,6′-tetrachlorides, and the 3,6,6′- and 3′,6,6′-trichlorides was obtained together with the 3′,4′-epoxide of the 6,6′-dichloride, which was an artefact. Under milder conditions, the 6,6′-dichloride was encountered, together with methyl 6-chloro-6-deoxy-β-D-glucopyranoside which had arisen by hydrolysis of the interglycosidic bond. It is particularly noteworthy that displacement occurred at C-3′ of the lactoside, in spite of the vic-axial group at C-4′ which should hinder nucleophilic displacement at C-3′. The cause of this anomaly is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号