首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
张鹤龄  宋艳茹 《病毒学报》1996,12(4):360-366
表达马铃薯X病毒(PVX)和马铃薯X病毒(PVY)双价外壳蛋白(CP)基因的马铃薯虎头和克新4号,用机械摩擦同时接种PVX和PVY后,通过症状观察,植株中PVX和PVY的ELISA检测结果表明,转基因头虎头和克新4号的多数株系的平均病毒含量均明显低于未转基因的对照植株,不同时期病毒测定结果表明,许多株系病毒积累缓慢,延迟发病,说明转PVX,PVY双价CP基因的马铃薯,对PVX和PVY复合侵染发生不  相似文献   

2.
马铃薯卷叶病毒基因间隔区转化的马铃薯抗病性研究   总被引:1,自引:0,他引:1  
将本室合成、克隆的马铃薯卷叶病毒(Potato Leafroll Virus, PLRV)中国分离株的基因间隔区(intergenic sequence, IS)双链cDNA以正、反向两种方式分别构建于转化载体pROK2中,通过致瘤农杆菌介导,以马铃薯叶圆片为转化材料,转化马铃薯栽培品种Desiree,获得了转基因植株.卡那霉素抗性分析和PCR检测目的基因,证明PLRV IS双链cDNA已经整合到转基因马铃薯的染色体基因组中.将转基因植株移栽网棚用蚜虫接种PLRV,观察症状并用酶联免疫吸附测定(ELISA)检测转基因植株中PLRV含量.结果表明,表达PLRV IS正意和反意RNA的转基因植株,接种病毒后表现无症状或症状轻微,PLRV平均滴度均较未转基因对照植株低.表达正意RNA的转基因植株PLRV滴度降低43%~72%,表达反意RNA的转基因植株PLRV滴度降低72%~86%,由此可见,表达PLRV IS反意RNA的转基因马铃薯对PLRV抗性较强.  相似文献   

3.
转PVY外壳蛋白基因马铃薯及其田间实验   总被引:10,自引:0,他引:10  
报道了将马铃薯Y 病毒(PVY)中国分离株的外壳蛋白基因通过农杆菌(Agrobacterium tum efa-ciens)介导转入马铃薯(Solanum tuberosum L.)的生产品种“Favorita”、“虎头”和“克4”,在获得大量再生植株的基础上经过PCR检测和Southern 杂交证明,大部分株系中PVY 外壳蛋白基因的表达框架已完整整合到马铃薯的染色体上。人工接种PVY 病毒(20 m g/L)后一些转基因株系对PVY 病毒的侵染表现较强的抗性,同时其单株结薯数和平均薯重有所增加。在田间实验中,转基因马铃薯植株生长良好而且部分转基因株系产量高于未转基因的脱毒马铃薯,从这些株系中有希望得到抗病性好而且高产的马铃薯品系  相似文献   

4.
改造的马铃薯Y病毒复制酶基因介导高度抗病性   总被引:15,自引:0,他引:15  
提取马铃薯Y病毒中国分离株(PVY—c)的mRNA作为模板,随机六聚脱氧核苷酸和寡聚dT为引物合成了单链cDNA。通过聚合酶链式反应(PcR)获得了PVY—C的核内含体b(Nib)全长cDNA克隆。在对其进行全序列分析的基础上,构建了PVY—CNIb基因全长.5’端缺失381个碱基和Nib反义RNA三种不同形式高等植物表达载体。在土壤农杆菌LBA4404的介导下,转化烟草生产品种NC89,获得了所有三种表达载体的转基因植株。通过分子生物学检测和抗性分析发现不同形式的Nib基因序列的转基因植株对马铃薯Y病毒表现不同程度的抗性。其中,以5’端缺失的Nlb的基因转化植株表现最好,从总共20个这类转化株系中筛选到4个株系至少在100μg/m1 PVY—C接种浓度下,表现完全的抗病效果。从总共39个全长Nib基因转化株系中,仅有一个株系,在100μg/ml PVY—c的攻毒接种下具有完全的抗病性。所有33个Nib基因反义RNA的转化植株中,无一株系表现完全的抗病效果,但是有部分株系能不同程度地延缓或减轻发病程度,并有部分植株在发病后50d左右有恢复健康的趋势。虽然能够在上述3种形式的Nib基因序列的转基因植物中检测到相应的RNA的转录产物,但是均未能检测到其相应的蛋白表达产物。  相似文献   

5.
将本室合成、克隆的马铃薯卷叶病毒(PotatoLeafrolVirus,PLRV)中国分离株的基因间隔区(intergenicsequence,IS)双链cDNA以正、反向两种方式分别构建于转化载体pROK2中,通过致瘤农杆菌介导,以马铃薯叶圆片为转化材料,转化马铃薯栽培品种Desire,获得了转基因植株。卡那霉素抗性分析和PCR检测目的基因,证明PLRVIS双链cDNA已经整合到转基因马铃薯的染色体基因组中。将转基因植株移栽网棚用蚜虫接种PLRV,观察症状并用酶联免疫吸附测定(ELISA)检测转基因植株中PLRV含量。结果表明,表达PLRVIS正意和反意RNA的转基因植株,接种病毒后表现无症状或症状轻微,PLRV平均滴度均较未转基因对照植株低。表达正意RNA的转基因植株PLRV滴度降低43%~72%,表达反意RNA的转基因植株PLRV滴度降低72%~86%,由此可见,表达PLRVIS反意RNA的转基因马铃薯对PLRV抗性较强。  相似文献   

6.
以前曾报道用RNA介导的抗病毒策略,获得了高度抗病的表达马铃薯Y病毒坏死株系外壳蛋白基因(PVY^N CP)的转基因烟草,并对T1、T2代转基因植株进行了遗传和抗病性分析。此次以T,代转基因植株为试验材料,在筛选高度抗病植株并证明其抗病性是基于转基因沉默的基础上,采用Northern杂交的方法,证明CMV侵染抑制了转基因植株中PVY^N CP基因的沉默,而且CMV对PVY^N CP基因沉默的抑制部位是发生在接种后的新生叶上,接种叶及其下部叶片中PVY^N CP基因沉默则未受到影响。采用ELISA方法对CMV PVY^N复合接种的转基因植株进行PVY^N检测,结果表明,接种叶及下部叶没有检测到PVY^N,植株叶片对PVY^N表现为抗病。而在CMV接种后植株新生叶中则检测出了高滴度的PVY^N,植株叶片对PVY^N表现为感病。该文报道了在表达PVY^N CP基因的RNA介导抗性转基因植株中,异源病毒侵染抑制了转基因的沉默,并导致转基因植株的抗病性丧失。  相似文献   

7.
马铃薯单双三价抗病毒基因表达载体的构建   总被引:7,自引:0,他引:7  
马铃薯Y病毒(PVY)、X病毒(PVX)和卷叶病毒(PLRV)引起的病害是造成我国马铃薯退化的主要原因,严重危害我国的马铃薯生产。PVY和PVX或PVY和PLRV混合侵染带来的损失远远大于各病毒单独侵染。国外科学家通过在马铃薯植株体内表达病毒外壳蛋白(CP)基因来减缓病毒病害的发生已取得相当的成功。 我们从河北省坝上地区农科所试验田中采集PLRV感病材料Burbank及87-1,参照文献提取病毒RNA并以其为模板,反转录合成cDNA。根据PLRV澳大利亚分离物已发表的序列,设计并  相似文献   

8.
以分离自马铃薯主栽品种“紫花白”的马铃薯卷叶病毒(PLRV)分离物的RNA为模板,用人工合成的引物,用反转录和随后PCR扩增的方法合成了PLRV外壳蛋白(CP)基因的cDNA,并克隆于pUC19中。进一步用限制酶切和核苷酸序列分析表明,合成的cDNA由627个核苷酸组成(包括起始和终止密码),序列中有Hinc Ⅱ和BamH Ⅰ两个酶切位点,与国外报道一致。和国外的4个PLRV分离物CP基因序列对比结果,具有高度同源性,其同源率达99.0—99.7%。  相似文献   

9.
马铃薯Y病毒蚜传辅助成分介导PVX/PVY协生作用   总被引:4,自引:0,他引:4  
构建了马铃薯Y病毒中国株系(PVY-C)蚜传辅助成分(HC-Pro)基因的正义、反义和缺失三种植物表达载体,通过农杆菌介导法转化烟草品种NC89。Southern blot分析表明,HC-Pro基因及其突变体已经整合到烟草染色体中,Western blot分析证明,正义HC-Pro基因及其缺失突变体在转基因烟草中有表达产物,攻毒试验结果表明,转正义,HC-Pro基因及其缺失突变体不仅能够提高T1转基因烟草中PVY-C的病毒积累和致病,而且对异源病毒PVX具有同样的作用,而转反义HC-Pro基因烟草对PVY-C和PVX的致病性无影响,因此,PVY-C HC-Pro基因介导PVX/PVY的协作作用。  相似文献   

10.
一种基于过敏性反应机制的抗植物病毒侵染策略   总被引:1,自引:0,他引:1  
基于植物的过敏性反应机制,构建了PVY Nib基因和来自于细菌Bacillus amy—loliquefaciens的一类Rnase基因Barnase基因的融合基因的植物表达载体。在此表达载体内两基因的拼接处,保留了原来PVY蛋白酶识别PVYNIb和CP蛋白剪切位点的七肽保守序列。通过农杆菌介导获得此融台基因的转基因烟草植株。病毒侵染试验表明,转基因植物在病毒侵染后,发病症状被改变。少部分转融合基因的植株对病毒侵染表现局部抗性。  相似文献   

11.
Potato virus Y (PVY) infection may cause a severe yield depression up to 80%. To develop the potato (Solanum tuberosum L. ) cultivars that resist PVY infection is very crucial in potato production. The authors have been cloned the coat protein gene of PVY from its Chinese isolate. A chimaeric gene containing the cauliflower mosaic virus 35S promoter and PVY coat protein coding region was introduced into the potato cultivars “Favorita”, “Tiger head” and “K4” via Agrobacterium tumefaciens. Results from PCR and Southern blot analysis confirmed that the foreign gene has integrated into the potato chromosomes. These transgenic potato plants were mechanically inoculated with PVY virus (20 mg/L). The presence of the virus in the potato plants was determined by ELISA and method of back inoculation into tobacco. The authors observed a drastic reduction in the accumulation of virus in some transgenic potato lines. Furthermore, some transgenic potato lines produced more tubers per plant than the untransformed potato did, and the average weight of these transgenic plant tubers was also increased. In the field test, the morphology and development of these transgenic potato plants were normal, 3 transgenic lines of “Favorita” exhibited a higher yield than the untrasformed virus-free potato with an increase ranged from 20% to 30%. From these transgenic lines, it will be very hopeful to develop a potato cultivar which not only has a significant resistance to PVY infection, but also a good harvest in potato production.  相似文献   

12.
在克隆了马铃薯X病毒(PVX)、马铃薯Y 病毒(PVY)和马铃薯卷叶病毒(PLRV)的外壳蛋白基因的基础上,构建同时包含PVX和PVY 与PVY 和PLRV 两个外壳蛋白基因植物表达框架的表达载体,通过农杆菌(Agrobacterium tumefaciens)介导转化烟草(Nicotianatabacum )和生产上常用的几个马铃薯(Solanum tuberosum )优良品种:“Favorita”、“虎头”、“克4”。经PCR检测证明外源基因已整合到植物的染色体上,得到批量转基因植株。在转PVX+PVY 外壳蛋白基因的烟草上接种PVX (5 μg/m L)、PVY(20 μg/m L)病毒,得到有一定抗性的植株  相似文献   

13.
14.
Potato virus Y (PVY) and potato leafroll virus (PLRV) are two of the most important viral pathogens of potato. Infection of potato by these viruses results in losses of yield and quality in commercial production and in the rejection of seed in certification programs. Host plant resistance to these two viruses was identified in the backcross progeny of a Solanum etuberosum Lindl. somatic hybrid. Multiple years of field evaluations with high-virus inoculum and aphid populations have shown the PVY and PLRV resistances of S. etuberosum to be stably expressed in two generations of progeny. However, while PLRV resistance was transmitted and expressed in the third generation of backcrossing to cultivated potato (Solanum tuberosum L. subsp. tuberosum), PVY resistance was lost. PLRV resistance appears to be monogenic based on the inheritance of resistance in a BC3 population. Data from a previous evaluation of the BC2 progeny used in this study provides evidence that PLRV resistance was partly conferred by reduced PLRV accumulation in foliage. The field and grafting data presented in this study suggests that resistance to the systemic spread of PLRV from infected foliage to tubers also contributes to the observed resistance from S. etuberosum. The PLRV resistance contributed by S. etuberosum is stably transmitted and expressed through sexual generations and therefore would be useful to potato breeders for the development of PLRV resistant potato cultivars.  相似文献   

15.
Coat protein-mediated resistance (CPMR), resistance conferred as a result of the expression of viral coat proteins in transgenic plants, has been illustrated to be an effective way of protecting plants against several plant viruses. Nonetheless, consistent protection has not been achieved for transgenic plants expressing the coat protein of potato virus Y (PVY), the type member of the potyvirus family. In this report, three different potato cultivars were transformed with a chimeric construct consisting of the capsid protein (CP) coding sequences of PVY flanked by the AUG codon and the translational enhancer from the coat protein gene of potato virus X (PVX). These cultivars were shown to express high levels of PVY CP and confer a high degree of protection against PVYo and PVYN under both greenhouse and field conditions. In addition, transgenic plants infected with potato virus A (PVA), a related potyvirus, exhibited a delay in virus accumulation, which could be easily overcome with increasing virus concentrations. Received: 26 October 1995 / Accepted: 14 June 1996  相似文献   

16.
Potato virus X (PVX), potato virus Y (PVY) and potato leaf roll virus (PLRV) infection in potato may result in the loss of centrification of seed potatoes and affect the quality and yield of potatoes in agricultural production. The authors cloned coat protein (cp) genes of PVX, PVY and PLRV and constructed two kinds of plant expression vector which contain PVX and PVY or PVY and PLRV cp genes. Three major commercial cultivars of potato and one cultivar of tobacco were transformed via Agrobacterium tumefaciens mediated procedure. Transgenic plants were confirmed by PCR analysis. Transgenic tobacco plants containing both PVX and PVY cp genes were significantly resistant to PVX and PVY infection via mechanical inoculation.  相似文献   

17.
Plants of two potato clones which, in preliminary greenhouse assessments, showed resistance to multiplication and accumulation of potato leafroll virus (PLRV) were graft or aphid inoculated with the virus and grown in the greenhouse; plants of a moderately susceptible cultivar were used for comparison in all experiments. A high concentration of aphid‐borne inoculum was used to ensure strong infection pressure. Clone M62759 appeared to be highly resistant to PLRV infection, whereas clone PS1706 was more susceptible. Both clones expressed a high level of resistance to virus multiplication, when primary or secondary infection was assayed by enzyme‐linked immunosorbent assay. Moreover, PLRV was detected in only few or none of the progeny plants of clone M62759, which thus strongly inhibited virus transport to tubers. The study on PLRV translocation from aphid‐inoculated shoots to uninoculated shoots sprouted from the same tubers showed that no specific mechanisms are likely to impair PLRV movement through the tubers of the resistant genotypes. These results indicate that three valuable components of the resistance to PLRV are probably closely linked in the genotype, a combination that seems to occur rather rarely in potato clones. Nevertheless, selecting potato genotypes for the complex resistance to PLRV may prove to be a worthwhile part of breeding programmes, provided that the genetic mechanisms governing particular types of resistance are better recognized.  相似文献   

18.
Natural mutations in translation initiation factor eIF4E confer resistance to potyviruses in many plant species. Potato is a staple food crop plagued by several potyviruses, yet to date no known eIF4E-mediated resistance genes have been identified. In this study, we demonstrate that transgenic expression of the pvr1(2) gene from pepper confers resistance to Potato virus Y (PVY) in potato. We then use this information to convert the susceptible potato ortholog of this allele into a de novo allele for resistance to PVY using site-directed mutagenesis. Potato plants overexpressing the mutated potato allele are resistant to virus infection. Resistant lines expressed high levels of eIF4E mRNA and protein. The resistant plants showed growth similar to untransformed controls and produced phenotypically similar tubers. This technique disrupts a key step in the viral infection process and may potentially be used to engineer virus resistance in a number of economically important plant-viral pathosystems. Furthermore, the general public may be more amenable to the 'intragenic' nature of this approach because the transferred coding region is modified from a gene in the target crop rather than from a distant species.  相似文献   

19.
Twelve potato clones were exposed to infection by aphids with potato leafroll luteovirus (PLRV) in three field trials in order to assess their resistance to infection. Up to 92% of the plants of some clones became infected, although other clones were relatively resistant to infection and one clone remained virus-free in all three trials. The resistance of the same 12 clones to PLRV multiplication was assessed in glasshouse-grown plant: lants were graft-inoculated and their daughter tubers were used to grow plants with secondary infection. High concentrations of PLRV were found in some clones (c. 1700 ng/g leaf) while in others much less virus accumulated (as little as 60 ng/g leaf). However, clones in which little virus accumulated were not necessarily those which were most resistant to infection in the field, and there was no association between the two types of resistance. Nevertheless, both types of resistance were found in some clones. The clone G8107(1), which remained virus-free in all the field exposure trials, was also the most resistant to PLRV multiplication. The combination of these two types of resistance in cultivars should help to eliminate the spread of PLRV in crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号