首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
克鲁维酵母(Kluyveromyces sp.)Y-85产生的胞内菊粉酶(endocellular inulinase)和胞外菊粉酶(exocellular inulinase)粗酶液分别经PEG6000-磷酸盐缓冲液双水相抽提得部分纯化酶液。前者进一步用硫酸铵分级沉淀、Protein-PAK DEAE离子交换、Protein-PAK200SW凝胶过滤后得到两个菊粉酶组分EⅠ和EⅡ;后者采用DEAE-Sephacel离子交换、Sephadex G150凝胶过滤后得到菊粉酶Eexo。经Waters 650E蛋白纯化系统鉴定,三者均呈单一的对称峰;EⅠ和EⅡ达聚丙烯酰胺盘状凝胶电泳纯。EⅠ、EⅡ和Eexo的分子量分别为42kD、65kD和57kD;三者均为糖蛋白,多糖含量分别为30%、35%和25%;I/S(Inulinaseactivity/Sucrase activity)比值分别为0.086、0.078和0.072;三者均属外切菊粉酶。EⅠ、EⅡ和Eexo酶反应最适pH分别为4.6、4.5和4.6,最适温度分别为52℃、52℃和55℃;Ag+、Hg2+和PCMB对酶活性有强烈的抑制作用;三者水解菊芋…  相似文献   

2.
土典霉金色变种AT8951菊粉酶粗酶液经硫酸铵分段沉淀、DEAE Cellulose DE32离子交换、超滤、Sephadex G-150凝胶过滤和FPLC,获得两个菊粉酶组分EⅠ和EⅡ,经分析型FPLG和PAGE鉴定为单一纯和分析纯。EⅠ分子量为66KD,最适作用温度和pH分别55℃和5.8;EⅡ分子量为56KD,最适作用温度为57℃,最适pH为6.0。EⅠ和EⅡ皆为糖蛋白,多糖含量分别为24.7%和22%,都属于内切酶。本文还对EⅠ和EⅡ的Km值和I/s值,温度、pH、离子对酶活作用的影响等进行了研究。  相似文献   

3.
黑曲霉M89菊粉酶的提纯与性质   总被引:8,自引:0,他引:8  
黑曲霉(Aspergillusniger)M89菊粉酶经硫酸铵分级盐析、SephadexG-200凝胶过滤、DEAE-纤维素离子交换层析、聚丙烯酞胺凝胶电泳(PAGE)制备分离,提纯到4个菊粉酶组分EⅠ、EⅡ、EⅢ和EⅣ。用SDS-PAGE测定分子量分别为102.6、97.9、61.2和36.5kD;用等电聚焦电泳测得其等电点分别为4.15、4.24、4.48和4.15。4个组分的最适反应温度均为55~60℃;EⅠ的最适pH为pH4.0,其余3个组分为pH4.5.各组分的热稳定性有一定差异,分子量越小的组分,热稳定性越好,55℃处理90min,EⅠ有一定的热失活,其余3个组分无活力丧失,4个组分都是外切酶。  相似文献   

4.
假单胞菌L-半胱氨酸合成酶的纯化和性质研究   总被引:2,自引:1,他引:2  
假单胞菌TS-1138的细胞浆液通过硫铵沉淀、SephadexG-75凝胶过滤、DEAE-Cellulose52离子交换、SephadexG 100凝胶过滤等分离纯化手段分别将从L-ATC合成L 半胱氨酸的两个酶——L-ATC水解酶和L-SCC水解酶纯化了 83.9和 90.3倍。SDS-PAGE鉴定均为单一条带 ,两种酶的相对分子质量分别为 37.5和 42.8kD ;酶反应的最适温度均为 35℃ ,最适pH分别为 7.0和 8.0 ;酶的米氏常数分别为 0.67mmol L和 0.15mmol L ,  相似文献   

5.
毛壳霉内切菊粉酶的纯化与性质   总被引:4,自引:0,他引:4  
毛壳霉 (Chaetomiumsp .)C34发酵液经硫酸铵分级沉淀、DEAE 纤维素 11离子交换层析、Q SepharoseFastFlow离子交换层析、SephacrylS 2 0 0凝胶过滤、PhenolSepharoseTM HP疏水层析 ,得到电泳纯的内切菊粉酶组分 ,纯化倍数为 30 8倍 ,活力回收率为 7 7%。用SDS PAGE测得该酶亚基的分子量为 6 6kD。菊粉酶的最适pH为 6 0 ,最适温度为 5 0~ 5 5℃。菊粉酶在 5 0℃以下 ,pH5 0~ 8 0时较稳定。Cu2 完全抑制酶的活性 ,Mn2 、Zn2 、Fe2 、EDTA以及NBS(N bromosuccinimide ,N 溴代丁二酰亚胺 )对该酶有很强的抑制作用。该酶对菊粉有较强底物专一性 ,产物主要为低聚果糖 ,也可作用于蔗糖 ,I S值为 2 0。以菊粉为底物时 ,Km 为 0 199mmol L ,Vmax为 115 μmol (mg·min)。  相似文献   

6.
通过(NH4)2SO4分级沉淀、HiPrep 26/10 Desalting凝胶色谱脱盐、Source 15 Q阴离子交换色谱技术,里氏木霉(Rut C-30)纤维素酶主要组分得以初步分开,再经过Source 15 S阳离子交换色谱、HiPrep Sephacryl S-100 HR凝胶过滤色谱、Superdex 75 PrepGrade凝胶过滤色谱进一步分离纯化,得到2个纯化的内切葡聚糖酶组分EGⅡ、EGⅠ和一个外切葡聚糖酶组分CBHⅠ;经过SDS-PAGE电泳鉴定为电泳纯,测得相对分子质量分别为5.22×104,5.62×104和6.90×104。EGⅡ的最适反应pH是5.6,最适反应温度为65℃;EGⅠ的最适反应pH是4.4,最适反应温度为55℃;以羧甲基纤维素(CMC)为底物时,EGⅠ、EGⅡ的米氏常数(Km)分别为2.20 mg/mL、3.38 mg/mL。CBHⅠ的最适反应pH是5.8,最适反应温度为60℃,以对硝基苯基-β-D-纤维二糖苷(PNPC)为底物时,米氏常数(Km)为0.12 mg/mL。  相似文献   

7.
 通过过聚乙二醇6000-磷酸钾缓冲液双相分离、Sephadex G-100凝胶过滤、DEAE-Sephadex A-50离子交换层析、羟基磷灰石层析及SephadexG-100凝胶过滤等提纯步骤,从海枣曲霉(Aspergillus phoenicis)麦麸培养物抽提液中提纯得到凝胶电泳均一的β-半乳糖苷酶。该酶的最适pH为3.5—4.0,最适温度为60℃(反应15分钟),在pH5.0—8.5之间及60℃以下稳定。在65℃和70℃保温时失活50%的时间分别为27和2分钟。用SDS凝胶电泳法和梯度凝胶电泳法分别测得该酶的分子量为115,000和118,000。薄层凝胶等电聚焦法测得其等电点为pH4.6。  相似文献   

8.
土曲霉金色变种AT8951菊粉酶的纯化和性质的研究   总被引:4,自引:0,他引:4  
白春阳  苏文金 《真菌学报》1994,13(4):282-289
土曲霉金色变种AT8951菊粉酶粗酶液经硫酸铵分段沉淀、DEAECeluloseDE32离子交换、超滤、SephadecG-150凝胶过滤和FPLC,获得两个菊粉酶组分EI和EII,经分析型FPLC和PAGE鉴定为单一纯和分析纯。EI分量为66KD,适适作用温度和PH分别55℃和5.8;EII分子量为56KD,最适作用温度为57℃,最适PH为6.0。EI和EII皆为糖蛋白,多糖含量分别为24.7%  相似文献   

9.
用纱网滤掉瘦肉型猪 (PIC344) 新鲜精液中胶状物得原精液, 该原精液经硫酸铵分段盐析、DEAE Sepharose F F 离子交换柱层析、Sephacryl S 200 凝胶过滤后分离纯化到酸性磷酸酶 (Acid Phosphatase, 简称ACPase)。纯化倍数为22 78, 酶液比活力为15 26U/mg蛋白。纯化酶液经非还原性SDS PAGE检测, 呈现单一蛋白着色带。测得该酶相对分子质量为52 3kD, 等电点为5 1, 米氏常数 (Km 值) 为3 08×10-3mol/L。测得该酶最适pH为3 6, 最适温度为52℃。ACPase在pH 3 5~6 0范围内稳定, 在40℃以下稳定, 50℃保温30min后酶活仍能保持59 2%。  相似文献   

10.
GL-7-ACA酰化酶的分离纯化及性质研究   总被引:8,自引:0,他引:8  
CU334是高表达GL-7-ACA酰化酶工程菌,其菌悬液用超声波处理后,经硫酸铵分级沉淀、DEAE-Sephadex A-50离子交换柱层析、DEAE—纤维素DE-52柱层析、Sephadex G-200凝胶过滤及羟基磷灰石吸附柱层析等步骤,得到了凝胶电泳均一的GL-7-ACA酰化酶蛋白,纯化了22倍,得率4.0%,比活力为13.8U/mg。用浓度梯度PAGE测得GL-7-ACA酰化酶的分子量为134kD,用SDS-PAGE测得两个亚基分子量分别为15.5kD和58.4kD。用PI法测得等电点为3.5。GL-7-ACA酰化酶反应最适pH为7.0。反应最适温度为37℃,GL-7-ACA酰化酶对底物GL-7-ACA的K_m值为0.50mmol/L,V_(max)为13.10U·mg^(-1)。Ca^(2+)、EDTA和巯基乙醇对该酶有激活作用,Cu^(2+)、Fe^(2+)和Mg^(2+)等有一定程度的抑制作用。产物7-ACA、戊二酸均为GL-7-ACA酰化酶的反竞争性抑制剂,其K_1值分别为16.58mmol·L^(-1)和9.88mmol·L^(-1)。  相似文献   

11.
鲍曼不动杆菌烈性噬菌体的分离与纯化   总被引:1,自引:0,他引:1  
梁莉  杨洪江  金鑫 《生物学杂志》2010,27(4):88-90,93
利用柱层析方法,纯化鲍曼不动杆菌(Acinetobacter baumannii)烈性噬菌体AB1。首先采用聚乙二醇6000沉淀方法,初步分离裂解液中的噬菌体,噬菌体纯度由6.1×1010 pfu/mg提高到37×1010 pfu/mg,噬菌体回收率为58.8%,蛋白质去除率为90.6%;噬菌体粗提样品经Sepharose 4B凝胶过滤层析柱进一步纯化,纯度提高到73×1010 pfu/mg,噬菌体回收率为95.7%,蛋白质去除率为48.1%;收集的噬菌体样品最后经DEAE-52阴离子交换层析柱处理,噬菌体纯度为40×1010 pfu/mg,回收率为50.8%,蛋白去除率15.6%。内毒素分析结果显示,Sepharose 4B凝胶过滤层析纯化的噬菌体样品中,内毒素含量为443.8 EU/mg,而DEAE-52阴离子交换层析纯化的噬菌体样品中,内毒素含量为544.4 EU/mg。实验结果显示,PEG沉淀方法与Sepharose 4B凝胶过滤方法能够有效地提高噬菌体纯度,而DEAE-52阴离子交换层析则不能提高噬菌体的纯度,也无法有效地去除样品中的内毒素。  相似文献   

12.
Two of the six esterases identified in Cucurbita pepo cv. "Eskandrani" were purified to homogeneity using two chromatography steps: anion exchange and gel filtration. The molecular weights of C. pepo esterases EIc and EII were 50,000 +/- 1500 and 68,000 +/- 1900 Da from gel filtration and 47,000 and 66,000 Da from SDS/PAGE, respectively, suggesting a monomeric structure for both enzymes. Esterases EIc and EII had K(m) values of 1.22 and 1.56 mM and pH optima at 9.0 and 8.0, respectively. The substrate specificity of C. pepo esterases EIc and EII were determined for a number of p-nitrophenyl esters, where their affinity toward these substrates were decreased as carbon atom number increased. Esterases EIc and EII had the same temperature optima, 40 degrees C. Thermal stability studies of esterases EIc and EII indicated that half maximal activities of EIc and EII esterases were reached at 55 degrees C and 50 degrees C, while they lost 45%, 51% and 70%, 77% of their activities after 30 and 90 min of incubation at 40 degrees C, respectively. The effect of different metal cations and inhibitors were examined. The inhibition studies revealed that the active sites of the two esterases contain serine and cysteine residues. The characteristics of C. pepo esterases are closely similar to those of microbial esterases used in food processing and food industry.  相似文献   

13.
菠菜铁型超氧化物歧化酶的纯化及性质   总被引:6,自引:0,他引:6  
用聚丙烯胺梯度凝胶电泳法检测出菠菜SOD同工酶谱带中含3条Fe-SOD活性带,菠菜叶Fe-SOD粗提取液经硫酸铵分部沉淀,DEAE-纤维素-A52和SephadexG-100柱层析,纯化出单一的Fe-SOD活性带,纯化酶的分子量为42.6kD,亚基分子量为21kD。对金属元素的分析表明,该酶每分子含2.6个Fe原子,该酶紫外区最大吸收峰为278nm,等电点为4.6,氨基酸组成和其它来源的Fe-SO  相似文献   

14.
beta-mannanase (EC 3.2.1.78) from Bacillus subtilis SA-22 was purified successively by ammonium sulfate precipitation, hydroxyapatite chromatography, Sephadex G-75 gel filtration and DEAE-52 anion-exchange chromatography. Through these steps, the enzyme was concentrated 30.75-fold with a recovery rate of 23.43%, with a specific activity of 34780.56 u/mg. Molecular weight of the enzyme was determined to be 38 kD by SDS-PAGE and 34 kD by gel filtration. The results revealed that the optimal pH value for the enzyme was 6.5 and the optimal temperature was 70 degrees C. The enzyme is stable between pH 5 to 10. The enzyme remained most of its activity after a treatment of 4 h at 50 degrees C, but lost 25% of activity at 60 degrees C for 4 h, lost 50% of activity at 70 degrees C for 3 h. The enzyme activity was strongly inhibited by Hg2+. The Michaelis constants (Km) were measured as 11.30 mg/mL for locust bean gum and 4.76 mg/mL for konjac powder, while Vmax for these two polysaccharides were 188.68 (micromol x mL(-1) x min(-1)) and 114.94 (micromol x mL(-1) x min(-1)), respectively.  相似文献   

15.
Heparinase I has been purified from F. heparinum by a novel scheme with 10mM CaCl(2) added in crude extracts of cells. The enzyme was purified to apparent homogeneity through ammonium sulfate precipitation, Octyl-Sepharose chromatography, CM-52 chromatography, SP-650 chromatography, and Sephadex G-100 gel filtration chromatography. The specific activity of the purified enzyme was 90.33 U/mg protein with a purification fold of 185.1. The yield was 17.8%, which is higher than any previous scheme achieved. The molecular weight of the purified enzyme was 43 kDa with a pI of 8.5. It has an activity maximum at pH range of 6.4-7.0 and 41 degrees C. CaCl(2) is a good stabilizer of the purified enzyme in liquid form toward either storaging at 4 degrees C or freezing-thawing.  相似文献   

16.
Although beta-D-fucosidase (beta-D-fucoside fucohydrolase, EC 3.2.1.38) has been isolated from various sources, the identity of this enzyme is still not settled. We have purified a specific beta-D-fucosidase in electrophoretically homogeneous form crude extracts of Aspergillus phoenicis by polyethyleneglycol 6000-phosphate buffer aqueous two-phase separation, and successive chromatography on DEAE-Sephadex A-50, hydroxyapatite and Sephadex G-100 columns. The molecular weight of the enzyme was estimated to be 57000 by SDS-polyacrylamide gel electrophoresis and 50000 to 60000 by gel filtration on Sephadex G-100. The enzyme showed optimum coside were 2.4mmol/L, and 1.28 mumol min-1 the pH range 5.5-6.5 and below 35 degrees C. The Km and the Vmax values for pNP-beta-D-fucoside were 2.4mmol/L, and 1.28 mumol.min-1.mg-1 respectively. The enzyme was strongly inhibited by sulfhydryl group reagents, PCMB-NEM and iodoacetate. It was also inhibited by EDC, DEP and NBS. Thus, -SH, -COOH groups, histidyl and tryptophyl residues were essential for enzyme activity. The purified beta-D-fucosidase showed high specificity toward p-nitrophenyl beta-D-fucoside. The enzyme was inhibited by D-fucose and D-fucono-gamma-lactone, but not by D-galactose, D-galactono-gamma-lactone, D-glucose or D-glucono-gamma-lactone; the latter compounds are specific inhibitors of beta-D-galactosidase and beta-D-glucosidase respectively. Thus, this enzyme is the most strictly specific beta-D-fucosidase when compared with those previously reported.  相似文献   

17.
小麦谷氨酸脱羧酶的纯化及部分性质研究   总被引:11,自引:0,他引:11  
谷氨酸脱羧酶(glutamatedecarboxylase,GAD,EC4.1.1.15)催化谷氨酸脱羧生成γ-氨基丁酸(γ-aminobutyrate,BA),植物中已从南瓜[1]、马铃薯和林生山黧豆[2]纯化了GAD.GAD活性在禾本科作物中作为...  相似文献   

18.
Two distinctly different glutamine synthetase enzymes (EI and EII) have been isolated from the extreme thermophile Bacillus caldolyticus, grown on chemically defined medium at 70 degrees C. Purification to homogeneity mainly involves affinity chromatography and heat treatment with substrate protection. Biosynthesis of total enzyme activity can be repressed by at least 8-fold by high ammonia, with synthesis of EI being repressed more strongly than EII. A variety of chemical and biochemical tests failed to provide evidence for regulation of EI or EII by covalent modification, e.g. proteolysis, phosphorylation, or adenylylation. Neither of the thermophiic enzymes will cross-react with antibodies for the Escherichia coli or Bacillus subtilis glutamine synthetases. Both enzymes are composed of 12 subunits, each approximately 51,000 daltons. However, EI and EII differ significantly in their amino acid composition, isoelectric points (5.2 and 5.5, respectively), rates of migration on polyacrylamide electrophoresis gels at pH 6.8, and kinetic properties, EI is more active with Mg(II) than with Mn(II), but EII is more active with Mn(II) than Mg(II). Cd(II) activates EII more than EI, and only EI shows activity with Co(II). For both enzymes, the Mn(II)-stimulated activity is optimal at pH 6.0 to 6.5, with Mn(II)/ATP = 1.0, but the pH optimum with Mg(II) is near pH 7.5, however, with a ratio of Mg(II)/ATP > 2. Substrate Km values at 70 degrees C differ for EI versus EII but are quite comparable to those seen for mesophilic glutamine synthetases. Studies with structural analogs of substrates indicate that active site specificity is maintained at extreme temperatures: substitution of alpha-OH for alpha-HN2 is allowed, but unfavorable changes occur upon substitution of methyl groups for the alpha-H or onto the alpha-NH2 of L-Glu, and for D-Glu or L-Asp. EII is almost absdolutely specific for ATP, but EI can also use ITP, GTP, and UTP as substrates to some extent. The divalent metal ion that is present can affect both specificity for analogs and substrate Km values. Kinetic binding plots (v versus [S]) are biphasic for NH3 and L-Glu with the more active forms of each enzyme, EI-Mg and EII-Mn, respectively; but no positive cooperativity is observed. ATP binding is strictly hyperbolic, in contrast to the positive cooperativity previously observed with other Bacillus sp. enzymes. For purified EI and EII, Arrhenius plots are nonlinear with Mn(II) or Mg(II), exhibiting slope changes in the range of 55-65 degrees C; however, for EI-EII mixtures in crude cell extracts these plots are nearly linear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号