首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
To investigate whether DNA replication in rat hepatoma cells is altered compared with that in normal rat liver, the main replicative enzyme, i.e. the DNA polymerase alpha complex, was partially purified from a slow-growing (TC5123) and a fast-growing (MH3924) Morris hepatoma cell strain as well as from normal rat liver. The purified DNA polymerase alpha complexes contained RNA primase. DNA polymerase alpha activities of these complexes were characterized with regard to both their molecular properties and their dNTP and DNA binding sites. The latter were probed with competitive inhibitors of dNTP binding, resulting in Ki values, and with DNA templates, yielding Km values. The sedimentation coefficients of native DNA polymerases alpha from Morris hepatoma cells were found to be lower than that of polymerase alpha from normal rat liver. Consequently, when following the procedure of Siegel and Monty for determination of molecular mass considerably smaller molecular masses were calculated for polymerases of hepatoma strains (TC5123, 127 kDa; MH3924, 138 kDa; rat liver, 168 kDa). Similar differences were found when the dNTP binding site was probed with inhibitors. Ki values obtained with butylphenyl-dGTP were higher for polymerases of the hepatoma strains than for that of normal rat liver. However, Ki values measured with aphidicolin and butylanilino-dATP were lower for DNA polymerase alpha from the fast-growing hepatoma cell strain than for that from normal rat liver, indicating a reduced affinity of the dNTP binding sites for dATP and dCTP. This reduced affinity could be responsible for lowered specificity of nucleotide selection in the base-pairing process which in turn may cause an enhanced error rate in DNA replication in malignant cells. Furthermore, when the DNA binding site was characterized by Michaelis-Menten constants using gapped DNA as a template, Km values were similar for all three DNA polymerases. In contrast, the Km value measured with single-stranded DNA as a template was found to be lower for DNA polymerase alpha from the fast-growing hepatoma MH3924 than for that from normal rat liver. Thus, the DNA-polymerizing complex from MH3924 combines both higher binding strength to single-stranded DNA templates and decreased nucleotide selection, properties which may enhance replication velocity and may lower fidelity.  相似文献   

5.
Li SX  Vaccaro JA  Sweasy JB 《Biochemistry》1999,38(15):4800-4808
DNA polymerase beta is a small monomeric polymerase that participates in base excision repair and meiosis [Sobol, R., et al. (1996) Nature 379, 183-186; Plug, A., et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 1327-1331]. A DNA polymerase beta mutator mutant, F272L, was identified by an in vivo genetic screen [Washington, S., et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 1321-1326]. Residue 272 is located within the deoxynucleoside triphosphate (dNTP) binding pocket of DNA polymerase beta according to the known DNA polymerase beta crystal structures [Pelletier, H., et al. (1994) Science 264, 1891-1893; Sawaya, M., et al. (1997) Biochemistry 36, 11205-11215]. The F272L mutant produces errors at a frequency 10-fold higher than that of wild type in vivo and in the in vitro HSV-tk gap-filling assay. F272L shows an increase in the frequency of both base substitution mutations and frameshift mutations. Single-enzyme turnover studies of misincorporation by wild type and F272L DNA polymerase beta demonstrate that there is a 4-fold decrease in fidelity of the mutant as compared to that of the wild type enzyme for a G:A mismatch. The decreased fidelity is due primarily to decreased discrimination between the correct and incorrect dNTP during ground-state binding. These results suggest that the phenylalanine 272 residue is critical for maintaining fidelity during the binding of the dNTP.  相似文献   

6.
2',3'-Dideoxythymidine triphosphate differentially inhibited replicative DNA synthesis in permeable mouse ascites sarcoma cells and unscheduled DNA synthesis in bleomycin-treated permeable cells or in isolated rat liver nuclei. The mode of inhibition of 2',3'-dideoxythymidine triphosphate was competitive with respect to deoxythymidine triphosphate. 2',3'-Dideoxythymidine triphosphate inhibited replicative DNA synthesis with a Ki of 8 microM, whereas unscheduled DNA synthesis was more sensitive, the Ki being 0.5 microM. Referring to the differential sensitivity of DNA polymerases alpha and beta to 2',3'-dideoxythymidine triphosphate and to other related information reported previously, the present results suggested that DNA polymerase alpha is playing a major role in replicative DNA synthesis, and DNA polymerase beta in unscheduled DNA synthesis.  相似文献   

7.
8.
The optimal condition for the rat DNA polymerase beta activity with (rA)n . (dT)12-18 as a template-primer was determined. The activity was remarkably affected by the concentration of the primer, (dT)12-18' and the mixing ratio of (dT)12-18 to (rA)n. DNA polymerase beta requires higher primer concentration (Km = 11.1 microM with respect to 3'-OH of the primer) than DNA polymerase gamma (Km = 0.04 microM) or oncornaviral DNA polymerase (Km = 0.08 microM) and the enzyme represented the maximum activity in the base ratio of 2:1 with (dT)12-18 and (rA)n suggesting the difference in reaction mechanisms of these enzymes. Under the optimized conditions, the specific activity of the near homogeneous preparation of DNA polymerase beta was 1,000,000 units per mg protein.  相似文献   

9.
10.
To introduce photoreactive dNTP residues to the 3'-end of a mononucleotide gap, base-substituted photoreactive deoxynucleoside triphosphate derivatives, (5-[N-(2,3,5,6-tetrafluoro-4-azidobenzoyl)-trans-3-aminopropenyl-1]- and 5-(N-[N-(4-azido-2,5-difluoro-3-chloropyridine-6-yl)-3-aminopropionyl]- trans-3-aminopropenyl-1)-2'-deoxyuridine 5'-triphosphates, were used as substrates in the DNA polymerase beta-catalyzed reaction. The resulting nick, containing a modified base at the 3'-end, was sealed by T4 phage DNA ligase. This approach enables the preparation of DNA duplexes bearing photoreactive groups at predetermined position(s) of the nucleotide chain. Using the generated photoreactive DNA duplexes, the photoaffinity modifications of DNA polymerase beta and human replicative protein A (hRPA) were carried out. It was shown that DNA polymerase beta and hRPA subunits were modified with the photoreactive double-stranded DNA considerably less effectively than by the nicked DNA. In the case of double-stranded DNA, the hRPA p70 subunit was preferentially labeled, implying a crucial role of this subunit in the protein-DNA interaction.  相似文献   

11.
We have studied the effects of the nucleotide analogue, 2',3'-dideoxythymidine-5'-triphosphate (ddTTP) on replicative DNA synthesis in HeLa cell lysates. As previously demonstrated (1), such lysates carry out extensive DNA synthesis in vitro, at rates and in a fashion similar to in vivo DNA replication. We report here that all aspects of DNA synthesis in such lysates (total dNTP incorporation, elongation of continuous nascent strands, and the initiation, elongation, and joining of Okazaki pieces) are only slightly inhibited by concentrations of ddTTP as high as 100-500 micrometer when the dTTP concentration is maintained at 10 micrometer. This finding is consistent with the report by Edenberg, Anderson, and DePamphilis (2) that all aspects of replicative in vitro simian virus 40 DNA synthesis are also resistant to ddTTP. We also find, in agreement with Edenberg, Anderson, and DePamphilis (2), that DNA synthesis catalyzed by DNA polymerases beta or gamma is easily inhibited by ddTTP, while synthesis catalyzed by DNA polymerase alpha is very resistant. These observations suggest that DNA polymerase alpha may be the only DNA polymerase required for all aspects of cellular DNA synthesis.  相似文献   

12.
In an effort to identify the deoxyribonucleic acid (DNA) polymerase activities responsible for mammalian viral and cellular DNA replication, the effect of DNA synthesis inhibitors on isolated DNA polymerases was compared with their effects on viral and cellular DNA replication in vitro. DNA polymerase alpha, simian virus 40 (SV40) DNA replication in nuclear extracts, and CV-1 cell (the host for SV40) DNA replication in isolated nuclei all responded to DNA synthesis inhibitors in a quantitatively similar manner: they were relatively insensitive to 2',3'-dideoxythymidine 5'-triphosphate (d2TTP), but completely inhibited by aphidicolin, 1-beta-D-arabinofuranosylcytosine 5'-triphosphate (araCTP), and N-ethylmaleimide. In comparison, DNA polymerases beta and gamma were inhibited by d2TTP but insensitive to aphidicolin and 20--30 times less sensitive to araCTP than DNA polymerase alpha. Herpes simplex virus type 1 (HSV-1) DNA polymerase and DNA polymerase alpha were the only enzymes tested that were relatively insensitive to d2TTP; DNA polymerases beta and gamma, phage T4 and T7 DNA polymerases, and Escherichia coli DNA polymerase I were 100--250 times more sensitive. The results with d2TTP were independent of enzyme concentration, primer-template concentration, primer-template choice, and the labeled dNTP. A specific requirement for DNA polymerase alpha in the replication of SV40 DNA was demonstrated by the fact that DNA polymerase alpha was required, in addition to other cytosol proteins, to reconstitute SV40 DNA replication activity in N-ethylmaleimide-inactivated nuclear extracts containing replicating SV40 chromosomes. DNA polymerases beta and gamma did not substitute for DNA polymerase alpha. In contrast to SV40 and CV-1 DNA replication, adenovirus type 2 (Ad-2) DNA replication in isolated nuclei was inhibited by d2TTP to the same extent as gamma-polymerase. Ad-2 DNA replication was also inhibited by aphidicolin to the same extent as alpha-polymerase. Synthesis of CV-1 DNA, SV40 DNA, and HSV-1 DNA in intact CV-1 cells was inhibited by aphidicolin. Ad-2 DNA replication was also inhibited, but only at a 100-fold higher concentration. We found no effect of 2'-3'-dideoxythymidine (d2Thd) on cellular or viral DNA replication in spite of the fact that Ad-2 DNA replication in isolated nuclei was inhibited 50% by a ratio of d2TTP/dTTP of 0.02. This was due to the inability of CV-1 and Hela cells to phosphorylate d2Thd to d2TTP. These data are consistent with the hypothesis that DNA polymerase alpha is the only DNA polymerase involved in replicating SV40 DNA and CV-1 DNA and that Ad-2 DNA replication involves both DNA polymerases gamma and alpha.  相似文献   

13.
A highly specific rabbit antiserum against DNA polymerase alpha from regenerating rat liver (antigen AG 1) and an antiserum against the preparation of the enzyme proteolytic fragments possessing catalytic activity (antigen AG 2) were obtained. The enzyme neutralization test revealed that antibodies against AG 2 inhibit the DNA polymerase activity in a much stronger degree, than those against AG 1. Data from a kinetic analysis of the enzyme complexed with the antibodies against AG 1 suggest that the catalytic and binding sites for dNTP and free Mg2+ are altered. The value of apparent Km for activated DNA is unchanged in the DNA polymerase complexes with antibodies both against AG 1 and AG 2.  相似文献   

14.
DNA synthesis in the adenovirus DNA replication complex, containing host DNA polymerases-α and -γ, was inhibited completely by aphidicolin and by 2′,3′-dideoxythymidine triphosphate (ddTTP). Double reciprocal plots of DNA polymerase activity in the replication complex against each dNTP gave a straight line although the complex contained two species of DNA polymerase. Inhibition by aphidicolin of DNA polymerase activity was competitive with dTTP but that of purified DNA polymerase-α isolated from adenovirus infected KB cells was competitive with dCTP. The above results suggest that DNA polymerases-α and -γ are integrated in the replication complex to behave as a single enzyme.  相似文献   

15.
A study was made of the correcting role of autonomous 3'-->5' exonucleases (AE) contained in multienzyme DNA polymerase complexes of rat hepatocytes or calf thymocytes. DNA was synthesized on phage psi X174 amber3 or M13mp2 primer-templates, and used to transfect Escherichia coli spheroplasts. Frequencies were estimated for direct and reverse mutations resulting from mistakes made in the course of in vitro DNA synthesis. The mistake rate of the hepatocytic complex was estimated at 3 x 10(-6) with equimolar dNTP, and increased tenfold when proteins accounting for 70% of the total 3'-->5' exonuclease activity of the complex were removed. The fidelity of DNA synthesis was completely restored in the presence of exogenous AE (epsilon subunit of E. coli DNA polymerase III). Nuclear (Pol delta n) and cytosolic (Pol delta c) forms of DNA polymerase delta were isolated from calf thymocytes. The former was shown to contain an AE (TREX2) absent from the latter. As compared with Pol delta c, Pol delta n had a 20-fold higher exo/pol ratio and allowed 4-5 times higher fidelity of DNA synthesis. The mistake rate of DNA polymerase complexes changed when dNTP were used in nonequimolar amounts.  相似文献   

16.
Some new analogues of ribonucleoside-5'-triphosphates modified in 3'-ribose position and base [CTP (3'NH2), CTP (3'NH2) (5Me), CTP (3'N3) (5 Me), RvTP (3'N3)] have been synthesized. The inhibitions of RNA-synthesis catalyzed by the influenza A viral RNA-polymerase in cell free system and by the RNA-polymerase II from mice liver in the system of cellular nuclei by these reagents have been compared. All the studied preparations efficiently inhibited the RNA-synthesis in both cases. The inhibitors modified only in 3'-ribose position did not express specificity to any of RNA-polymerases tested, while some analogues having two modification in the molecule demonstrated the selective inhibition of RNA-synthesis directed by the influenza A viral RNA-polymerase [ara GTP (3'NH2), RvTP (3'N3')].  相似文献   

17.
18.
Studies of mammalian terminal deoxyribonucleotidyltransferase (TdT) are facilitated by use of inhibitors that selectively knock down the activity of the enzyme. We have screened for selective inhibitors of TdT and identified a natural compound with this property in the Japanese vegetable, Arctium lappa. The compound has little effect on the activities of mammalian DNA polymerases, such as alpha, beta, delta or lambda polymerase, and prokaryotic DNA polymerases, such as Taq DNA polymerase, T4 DNA polymerase and Klenow fragment. H1- and C13-NMR spectroscopic analyses showed the compound to be baicalin, a compound previously reported as an anti-inflammatory or antipyretic agent. The IC50 value of baicalin to TdT was 18.6 microM. We also found that genistin, a baicalin derivative known to be antimutagenic, more selectively inhibited TdT activity than baicalin, although its IC50 value was weaker (28.7 microM). Genistin and baicalin also inhibited the activity of truncated TdT (the so-called pol beta core domain) in which the BRCT motif was deleted in its N-terminal region. In kinetic analyses, inhibition by either genistin or baicalin was competitive with the primer and non-competitive with the dNTP substrate. The compounds may, therefore, bind directly to the primer-binding site of TdT and simultaneously disturb dNTP substrate incorporation into the primer. Genistin and baicalin should prove to be useful agents for studying TdT.  相似文献   

19.
Autonomous 3'-->5'exonucleases are not bound covalently to DNA polymerases but are often involved in replicative complexes. Such exonucleases from rat liver, calf thymus and Escherichia coli (molecular masses of 28+/-2 kDa) are shown to increase more than 10-fold the accuracy of DNA polymerase beta (the most inaccurate mammalian polymerase) from rat liver in the course of reduplication of the primed DNA of bacteriophage phiX174 amber 3 in vitro. The extent of correction increases together with the rise in 3'-->5' exonuclease concentration. Extrapolation of the in vitro DNA replication fidelity to the cellular levels of rat exonuclease and beta-polymerase suggests that exonucleolytic proofreading could augment the accuracy of DNA synthesis by two orders of magnitude. These results are not explained by exonucleolytic degradation of the primers ("no synthesis-no errors"), since similar data are obtained with the use of the primers 15 or 150 nucleotides long in the course of a fidelity assay of DNA polymerases, both alpha and beta, in the presence of various concentrations of 3'-->5' exonuclease.  相似文献   

20.
A Basu  P Kedar  S H Wilson  M J Modak 《Biochemistry》1989,28(15):6305-6309
Pyridoxal 5'-phosphate is a potent inhibitor of the DNA polymerase activity of recombinant rat DNA polymerase beta. Kinetic studies indicate that the mechanism of PLP inhibition is complex. In a lower range of PLP concentration, inhibition is competitive with respect to substrate dNTP, whereas at higher levels of PLP several forms of enzyme combine with PLP and are involved in the overall inhibition, and a possible model for these interactions during the catalytic process is suggested. Reduction of the PLP-treated enzyme with sodium [3H]borohydride results in covalent incorporation of about 4 mol of PLP/mol of enzyme, and the modified enzyme is not capable of DNA polymerase activity. The presence of dNTP during the modification reaction blocks incorporation of 1 mol of PLP/mol of enzyme, and the enzyme so modified is almost fully active. This protective effect is not observed in the absence of template-primer. Tryptic peptide mapping of the PLP-modified enzyme reveals four major sites of modification. Of these four sites, only one is protected by dNTP from pyridoxylation. Sequence analysis of the tryptic peptide corresponding to the protected site reveals that it spans residues 68-80 in the amino acid sequence of the enzyme, with Lys 71 as the site of pyridoxylation. These results indicate that Lys 71 is at or near the binding pocket for the dNTP substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号