首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
云南黑籽南瓜砧木对低温下嫁接黄瓜生理特性的影响   总被引:2,自引:0,他引:2  
以‘津研4号’黄瓜(Cucumis sativus‘Jinyan No.4’)为接穗,云南黑籽南瓜(Cucurbita ficifoliaBouch啨)和黄瓜为砧木,研究了低温条件下黄瓜/云南黑籽南瓜嫁接株(黄瓜/南瓜)、黄瓜/黄瓜嫁接株和自根黄瓜株叶片的蔗糖(Suc)、葡萄糖(Glc)和可溶性蛋白质(Pr)含量的变化以及叶片羧化效率(CE)及不同叶位叶片、不同节位茎段中异戊烯基腺嘌呤核苷(iPA)含量的差异。结果表明,黄瓜/南瓜嫁接株叶片的Suc、Glc及Pr含量和CE值均显著高于自根黄瓜株和黄瓜/黄瓜嫁接株,自根黄瓜株与黄瓜/黄瓜嫁接株间差异不显著。iPA在嫁接植株和自根植株茎中均呈梯度分布,其含量在生长锥中最高,其次为上部茎段,下部茎段中的含量最低;自根黄瓜株和黄瓜/黄瓜嫁接株茎中的iPA含量显著低于黄瓜/南瓜嫁接株,而叶片中iPA含量显著高于黄瓜/南瓜嫁接株。研究结果表明,以黑籽南瓜为砧木可提高嫁接黄瓜对低温的耐受性。  相似文献   

2.
采用微波蒸馏-顶空固相微萃取-气质联用检测鱼体中常见的两种土霉味化合物,即2-甲基异茨醇(2-MIB)和土腥素(Geosmin).研究并优化了微波蒸馏萃取过程的关键参数(微波蒸馏时间、载气流量),结果表明微波蒸馏6min、载气流70 mL/min为土霉味化合物微波蒸馏萃取的最佳条件.在此优化的条件下,土霉味化合物能够充分地从鱼体中蒸馏出来,再采用顶空固相微萃取的方法使馏分中的土霉味化合物吸附于纤维涂层上,将其在250℃高温下解吸,并用GC-MS分析.基于此测定方法,鱼肉中2-甲基异茨醇和土腥素的检测限均达到0.1μg/kg,且其在1-20μg/kg的范围内线性关系良好,相关系数R分别达到0.987、0.995.因此,用该方法分析鱼体中痕量的(ppb级)的土霉味化合物,结果可靠.  相似文献   

3.
采用顶空固相微萃取结合气相色谱-质谱联用技术分析鉴定了野松茸干品中的挥发性风味成分.鉴定出48种风味化合物,占挥发性成分总量的91.44%,其中酸类9种、酯类6种、含氮杂环化合物11种、醇类3种、醛类5种、酮类10种、其他类4种.野松茸干品中主要的芳香成分是桂酸甲酯(42.99%)、3-甲基丁酸(8.56%)、2,6-二甲基吡嗪(8.36%)、2,5-二甲基吡嗪(2.46%)和1-辛烯-3-醇(2.06%).  相似文献   

4.
为了探索黑籽南瓜(Cucurbita ficifolia Bouché)对黄瓜(Cucumis sativus Linn.)生长的影响,以前者为砧木,‘津绿21-1'和‘津研4号'2个黄瓜品种为接穗,以自根植株为对照,对嫁接植株的形态指标、抗病性、单株产量及叶片营养元素含量进行研究.结果表明,嫁接植株在不同时期的形态指标均高于自根植株;嫁接黄瓜的单株产量显著高于自根黄瓜;枯萎病、病毒病、霜霉病和灰霉病4种病害在嫁接植株上的病情指数和发病率均低于自根植株;2个品种嫁接植株叶片的N、P、K、Ca和Mg含量均显著或极显著高于自根植株.结果表明,黑籽南瓜作为优良砧木可显著促进黄瓜的生长结实,提高其抗病性及对营养元素的吸收能力.  相似文献   

5.
花绒寄甲Dastarcus helophoroides (Fairmaire)成虫主要利用天牛幼虫蛀食树木时排出的虫粪所释放的挥发性化合物找到寄主所在的微栖境.本试验分别应用PDMS,DVB/CAR/PDMS,CAR/PDMS三种萃取头,采用固相微萃取技术对锈色粒肩天牛Apriona swainsoni (Hope)幼虫虫粪的挥发物进行了提取,再经气相色谱-质谱联用仪(GC-MS)进行化合物的鉴定.结果表明,虫粪中的挥发性物质主要为萜烯类,其中α-蒎烯的含量最高,柯巴烯的含量次之.三种萃取头在相同的温度和提取时间下,DVB/CAR/PDMS的萃取头的效果最好.  相似文献   

6.
不同基因型砧木嫁接黄瓜结瓜盛期光合特性的比较   总被引:2,自引:0,他引:2  
采用CIRAS-Ⅱ型便携式光合作用系统,对黑籽南瓜和新培育的白籽南瓜A22种不同基因型砧木嫁接黄瓜结瓜盛期的光合特性进行比较。结果表明:在结瓜盛期,2种砧木嫁接黄瓜不同叶位的叶片净光合速率均有一定差异,其中A2嫁接黄瓜中部和下部叶片的净光舍速率显著高于黑籽南瓜嫁接的黄瓜。A2与黑籽南瓜相比其嫁接黄瓜利用光能范围较广且光饱和时净光合速率、RuBP最大再生速率和表观量子效率分别高出黑籽南瓜嫁接的黄瓜23.2%、12.6%和8.2%。2种砧木嫁接的黄瓜CO2饱和点与羧化效率均相近,CO2补偿点A2低于黑籽南瓜嫁接的黄瓜。A2嫁接黄瓜叶片叶绿素a、b及叶绿素总量均明显高于黑籽南瓜嫁接的黄瓜,可溶性蛋白含量与黑籽南瓜嫁接的黄瓜差异不显著。A2嫁接黄瓜的雌花节率和平均单株产量分别高出黑籽南瓜嫁接的黄瓜25.2%和29.4%,A2嫁接黄瓜果实可溶性糖、可溶性蛋白和VC含量分别高出黑籽南瓜嫁接的黄瓜6.3%、15,2%和15.4%。  相似文献   

7.
采用微波蒸馏-顶空固相微萃取-气质联用检测鱼体中常见的两种土霉味化合物,即2-甲基异茨醇 (2-MIB) 和土腥素 (Geosmin)。研究并优化了微波蒸馏萃取过程的关键参数 (微波蒸馏时间、载气流量),结果表明微波蒸馏6min、载气流70 mL/min 为土霉味化合物微波蒸馏萃取的最佳条件。在此优化的条件下,土霉味化合物能够充分地从鱼体中蒸馏出来,再采用顶空固相微萃取的方法使馏分中的土霉味化合物吸附于纤维涂层上,将其在 250oC高温下解吸,并用 GC-MS 分析。基于此测定方法,鱼肉中2-甲基异茨醇和土腥素的检测限均达到0.1 µg/kg,且其在1-20 µg/kg的范围内线性关系良好,相关系数 R 分别达到0.987、0.995。因此,用该方法分析鱼体中痕量的(ppb级)的土霉味化合物,结果可靠。  相似文献   

8.
不同抗性砧木嫁接黄瓜幼苗对NaCl胁迫的生理响应   总被引:2,自引:0,他引:2  
在对系列黄瓜嫁接砧木进行耐盐性鉴定的基础上,选择夏尔巴、新土佐、铁力砧和云南黑籽南瓜4种抗性不同的砧木品种嫁接‘新泰密刺’黄瓜,以自根苗为对照,研究了幼苗对NaCl胁迫的生理响应差异.结果表明:在100 mmol·L-1 NaCl胁迫条件下,嫁接苗的电解质相对渗漏率和丙二醛含量均显著低于自根苗,其中黑籽南瓜嫁接苗最低,其次是铁力砧、新土佐和夏尔巴嫁接苗;NaCl胁迫下嫁接苗叶片中脯氨酸、可溶性糖含量及过氧化物酶(POD)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性均显著高于自根苗,其中黑籽南瓜嫁接苗最高,铁力砧和新土佐嫁接苗间无显著差异,夏尔巴嫁接苗最低.NaCl胁迫后,嫁接苗叶片中Na+含量为黑籽南瓜<铁力砧<新土佐<夏尔巴<自根苗,K+含量在黑籽南瓜、铁力砧和新土佐嫁接苗间差异不大,但均明显高于夏尔巴嫁接苗,自根苗含量最低;嫁接苗Na+/K+显著低于自根苗,以黑籽南瓜嫁接苗最低.  相似文献   

9.
火麻仁挥发油的化学成分研究   总被引:3,自引:0,他引:3  
本文采用水蒸气蒸馏法提取传统中药火麻仁中的挥发油,用GC毛细管柱进行分析,面积归一化法测定其相对含量,并用GC-MS鉴定其化学成分.共检出90个色谱峰,鉴定其中62个化合物,占挥发油总量的89 25%.鉴定的成分包括44种烃类化合物、7种芳香族化合物和11种脂肪族化合物及其衍生物.烃类化合物中以萜类为主,占挥发油总量的32.01%,相对含量较高的单萜及其衍生物包括β-芳樟醇(1.66%)、β-顺式-罗勒烯(1.30%)、樟脑(0.93%)、冰片和薄荷醇(0.44%);相对含量较高的倍半萜及其衍生物包括大牦牛儿烯 D(8.20%)、α-芹子烯(5.23%)、β-丁香烯(3.65%)、氧化石竹烯(2.22%)、δ-愈创木烯(1.55%)和α-丁香烯(1.19%).  相似文献   

10.
采用无水乙醚超声萃取得到新鲜木荷(Schima superba)花浸膏提取物,顶空固相微萃取富集挥发性成分,气相色谱-质谱联用仪分析,归一化法计算各组分的相对含量.鉴定出挥发性化合物中的51个成分,约占相对总含量的99%;挥发性成分中含氧化合物的含量超过93%,其中主要的化合物及其相对含量为酮代异佛尔酮(26.33%)、氧化芳樟醇(19.53%)、环氧芳樟醇(8.80%)、3,7-二甲基-2,6-辛二烯-1-醇(8.23%)、白藜芦素(7.89%)、4-羟基3,5,5-三甲基-2-环己烯-1-酮(6.54%)、2,6,6-三甲基-1,4-环己二酮(4.06%)、苯乙醇(2.17%)、2-甲基-2-壬烯-1-醇(2.04%)等.  相似文献   

11.
Variability of secondary metabolites in edible (peel and pulp) and inedible (seeds) parts of three pitanga varieties, red, red-orange and purple, was investigated during the maturation process. Hydrolysable tannins, anthocyanins, and flavonoids were quantified by HPLC/DAD and carotenoids by absorbance. Peel/pulp showed greater complexity of constituents (carotenoids, anthocyanins, flavonoids, and hydrolysable tannins), while only tannins were identified in seeds, but in quantities of 10 to 100 times greater. The red-orange variety showed the highest levels of phenolic compounds in seeds and peel/pulp, except anthocyanins. The analysis of the principal response curves showed that the pitanga biotype has greater influence on metabolite variation than ripening stages. During peel/pulp maturation, a reduction in the levels of flavonoids and tannins contrasted with an increase in carotenoids and cyanidin-3-O-glucoside in all varieties, whereas in the seeds oenothein B, the major tannin, increased up to 1.32 g/100 g fresh weight. Such marked differences between fruit parts demonstrate that the seeds in stages E3 and E4 are a source of hydrolysable tannins, compounds known for their antitumor activity, while peel/pulp of all varieties in the ripe stage provide natural antioxidants, such as carotenoids and flavonoids. Lastly, the purple biotype can be a rich source of the cyanidin-3-O-glucoside pigment a potent bioactive compound.  相似文献   

12.
Punica species are medicinally important plants belonging to the family Lythraceae. The pomegranate is widely reported to exhibit antiviral, antioxidant, anticancer, anti-proliferative activities. In the present study the ethanolic extract of the peel seeds of two species of Punica (Punica granatum and Punica protopunica) were subjected to GC–MS analysis. Twenty-one and 14 compounds were identified in P. granatum and P. protopunica peel seeds, respectively. The main chemical constituents in P. granatum-peel seeds were propanoic acid, benzenedicarboxylic acid, methoxypropionic acid and methyl amine. The corresponding constituents of P. protopunica peel seeds were benzenedicarboxylic acid, benzoic acid and propanoic acid. Moreover, the antioxidant effects of the aqueous ethanolic extracts were estimated in vitro. The two tested extracts contained significantly different phenolic and total flavonoid contents in P. granatum than in P. protopunica. Different in vitro methods of antioxidant activity determination produced varying results. In malondialdehyde (MDA), hydrogen peroxide (H2O2) scavenging and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays, the two peel seed extracts exhibited very high antioxidant activities, with higher activity observed for the P. granatum extract.  相似文献   

13.
The wealth of epidemiological evidence in the scientific world underscores the possibility that a plant-based diet can reduce the prevalence of common diseases such as diabetes, cardiovascular disease, cancer, and stroke. The therapeutic effects of plant sources are partly explained by phenolic secondary metabolites or polyphenolic compounds. Therefore, polyphenolic compounds, which are widely distributed in plants, are of great interest for the development of effective specific drugs with antioxidant and anti-inflammatory effects. Moreover, polyphenol compounds have no harmful effects due to their natural biocompatibility and safety. Numerous studies have highlighted the potential of some industrial food wastes from plant material processing, including apple peels and mashed potatoes, grape skins, tomato and carrot peels, pomegranate peels and seeds, and many others. These byproducts are considered low-cost sources of natural biological compounds, including antioxidants, which have beneficial effects on human health.The polyphenol complex of pomegranate peel (Punica granatum L.), which makes up half of the pomegranate fruit, has more pronounced antioxidant and anti-inflammatory properties than other parts. And the most important active components of pomegranate peel, which are found only in this plant, are punicalagin, followed by ellagic acid and gallic acid. It is known that these polyphenolic compounds of pomegranate peel have the most pronounced therapeutic effect. Several studies have shown the protective effect of ellagic acid, punicalagin, against oxidative stress damage caused by free radicals. The potential of pomegranate peel as an antioxidant and therapeutic component in various biological systems is high, according to scientific sources.However, despite extensive research in recent years, a review of sources has shown that there is insufficient evidence to support the therapeutic effects of polyphenolic compounds from pomegranate peels. The role of pomegranate peel polyphenolic compounds, including flavonoids, as antioxidants in various biological systems also requires further research. Of particular importance are the mechanisms by which antioxidants influence the cellular response against oxidative stress. The purpose of this review was to report our current knowledge of plant polyphenolic compounds and their classification, and to evaluate the potential of phenolic compounds from pomegranate peels with significant antioxidant and therapeutic effects.  相似文献   

14.
采用GC-MS技术,对台琼海桐蒴果皮的水蒸气蒸馏油样,以及蒴果籽的索氏提取油样的甲酯化样品进行分析。样品中各化学成分的相对含量用面积归一化法确定。在实验条件下,果皮油样共分离出24个峰,鉴定了17个,占总峰面积的94.70%。其主要成分为柠檬烯(24.27%)、γ-榄香烯(8.30%)、β-榄香烯(17.13%)、α-榄香烯(16.02%)、长叶龙脑(15.52%)和α-松油醇(2.17%),α-石竹烯(1.88%)。果籽油的甲酯化样品共分离出16个峰,鉴定了12个,占总峰面积的96.69%,其主要成分为棕榈油酸(34.83%)、反油酸(26.63%)、14-甲基-十五烷酸(17.08%),十八烷酸(1.88%),十四烷酸(1.61%)。分析结果说明台琼海桐蒴果皮富含挥发性芳香油,而蒴果籽油含有多种脂肪酸。  相似文献   

15.
Extract from yuzu fruit peel (Citrus junos Sieb. ex Tanaka) strongly suppressed the germination of lettuce seeds while that from the peel of other citrus fruits such as navel orange (C. sinensis) and lemon (C. limon Burm. f.) had very little or no effect. The highest inhibitory activity was located in the peel followed by the segment but no significant activity was found in the seed extract of yuzu fruit. The effect of yuzu peel extract was tested on a variety of major crops including 38 crop species. Germination of seeds of tomato (Lycopersicon esculentum Mill.), celery (Apium graveolens L. var. dulce) and watercress (Nasturtium officinale R. Br.) was completely blocked by 27.8 mg dry peel equivalent ml–1 of yuzu peel extract, while that of cucumber (Cucumis sativus L.) and pumpkin (Cucurbita moschata [Duch. ex Lam.] Duch. ex Poir.) seeds was not affected at this concentration, showing a broad variation in the sensitivity of crop seeds to the extract. The effectiveness of yuzu peel was also tested on some harmful weeds. The extract inhibited the elongation of both radicle and hypocotyl in summer weed quinoa (Chenopodium quinoa) grown on agar plates. Yuzu peel powder added to the soil was also effective in suppressing the growth of C. quinoa, Sonchus oleraceus L. and Digitaria ciliaris, while it had little effect on the spring weed Alopecurus aequalis Sobol. A strong growth inhibitory activity of yuzu peel was found in the aqueous phase after solvent extraction and most of the activity was recovered in the neutral fraction that passed through cation and anion exchange resins.  相似文献   

16.
The allelopathic potential of Citrus junos fruit waste after juice extraction was investigated. Aqueous methanol extracts of peel, inside and seeds separated from the fruit waste inhibited the growth of the roots and shoots of alfalfa (Medicago sativa L.), cress (Lepidium sativum L.), crabgrass (Digitaria sanguinalis L.), lettuce (Lactuca sativa L.), timothy (Pheleum pratense L.), and ryegrass (Lolium multiflorum Lam.). The inhibitory activity of the peel extract was greatest and followed by that of the inside and seed extracts in all bioassays. Significant reductions in the root and shoot growth were observed as the extract concentration was increased. The concentrations of abscisic acid-beta-d-glucopyranosyl ester (ABA-GE) in peel, inside and seeds separated from the C. junos fruit waste were determined, since ABA-GE was found to be one of the main growth inhibitors in C. junos fruit. The concentration was greatest in the peel, followed by the inside and seeds; there was a good correspondence between these concentrations and the inhibitory activities of the extracts. This suggests that ABA-GE may also be involved in the growth inhibitory effect of C. junos waste. These results suggested that C. junos waste may possess allelopathic potential, and the waste may be potentially useful for weed management.  相似文献   

17.
Various antimicrobial constituents of camu-camu fruit were isolated. Acylphloroglucinol (compound 1) and rhodomyrtone (compound 2) were isolated from the peel of camu-camu (Myrciaria dubia) fruit, while two other acylphloroglucinols (compounds 3 and 4) were obtained from camu-camu seeds. The structures of the isolated compounds were characterized by spectrophotometric methods. Compounds 1 and 4 were confirmed to be new acylphloroglucinols with different substituents at the C7 or C9 position of 2, and were named myrciarone A and B, respectively. Compound 3 was determined to be isomyrtucommulone B. This is the first report of the isolation of 3 from a natural resource. The antimicrobial activities of compounds 1, 3, and 4 were similar to those of 2, and the minimum inhibitory concentrations were either similar to or lower than that of kanamycin. These results suggest that the peel and seeds of camu-camu fruit could be utilized for therapeutic applications.  相似文献   

18.
Column chromatography of the dichloromethane fraction from an aqueous methanolic extract of fruit peel of Citrus pyriformis Hassk. (Rutaceae) resulted in the isolation of seven compounds including one coumarin (citropten), two limonoids (limonin and deacetylnomilin), and four sterols (stigmasterol, ergosterol, sitosteryl-3-beta-D-glucoside, and sitosteryl-6'-O-acyl-3-beta-D-glucoside). From the ethyl acetate fraction naringin, hesperidin, and neohesperidin were isolated. The dichloromethane extract of the defatted seeds contained three additional compounds, nomilin, ichangin, and cholesterol. The isolated compounds were identified by MS (EI, CI, and ESI), 1H, 13C, and 2D-NMR spectral data. The limonoids were determined qualitatively by LC-ESI/MS resulting in the identification of 11 limonoid aglycones. The total methanolic extract of the peel and the petroleum ether, dichloromethane, and ethyl acetate fractions were screened for their antioxidant and anti-inflammatory activities. The ethyl acetate fraction exhibited a significant scavenging activity for DPPH free radicals (IC50 = 132.3 microg/mL). The petroleum ether fraction inhibited 5-lipoxygenase with IC50 = 30.6 microg/mL indicating potential anti-inflammatory properties. Limonin has a potent cytotoxic effect against COS7 cells [IC50 = (35.0 +/- 6.1) microM] compared with acteoside as a positive control [IC50 = (144.5 +/- 10.96) microM].  相似文献   

19.
20.
【目的】研究柑桔提取物中主要杀螨活性成分,为柑桔提取物作为杀螨剂的使用奠定基础。【方法】采用乙醇、丙酮、乙酸乙酯、石油醚4种溶剂对北碚447的果皮与种子进行平行提取,对4种提取物进行杀螨活性评价。对北碚447的果皮乙醇提取物和乙酸乙酯提取物进行GC-MS分析,就其中主要成分进行杀螨活性评价,确定主要杀螨活性成分。【结果】发现柑桔乙醇提取物的杀螨活性最高;果皮提取物的杀螨活性高于种子;果皮和种子乙醇和乙酸乙酯提取物通过GC-MS分析共鉴定出35种成分,其中柠檬烯含量最高,和柠檬醛、4-松油醇、芳樟醇占提取物含量的85%以上;柠檬烯杀螨活性高于柠檬醛、松油醇、芳樟醇、?-蒎烯。【结论】柑桔提取物中主要的杀螨成分是柠檬烯、柠檬醛、4-松油醇、芳樟醇、?-蒎烯,以这些物质为主要有效成分的柑桔提取物类杀螨剂的研发具有重大意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号