首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The uptake of l-phenylalanine into brush border microvilli vesicles and basolateral plasma membrane vesicles isolated from rat kidney cortex by differential centrifugation and free flow electrophoresis was investigated using filtration techniques.Brush border microvilli but not basolateral plasma membrane vesicles take up l-phenylalanine by an Na+-dependent, saturable transport system. The apparent affinity of the transport system for l-phenylalanine is 6.1 mM at 100 mM Na+ and for Na+ 13 mM at 1 mM l-phenylalanine. Reduction of the Na+ concentration reduces the apparent affinity of the transport system for l-phenylalanine but does not alter the maximum velocity.In the presence of an electrochemical potential difference for Na+ across the membrane (ηNa0 >ηNa1) the brush border microvilli accumulate transiently l-phenylalanine over the concentration in the incubation medium (overshoot phenomenon). This overshoot and the initial rate of uptake are markedly increased when the intravesicular space is rendered electrically more negative by membrane diffusion potentials induced by the use of highly permeant anions, of valinomycin in the presence of an outwardly directed K+ gradient and of carbonyl cyanide p-trifluoromethoxyphenylhydrazone in the presence of an outward-directed proton gradient.These results indicate that the entry of l-phenylalanine across the brush border membrane into the proximal tubular epithelial cells involves cotransport with Na+ and is dependent on the concentration difference of the amino acid, on the concentration difference of Na+ and on the electrical potential difference. The exit of l-phenylalanine across the basolateral plasma membranes is Na+-independent and probably involves facilitated diffusion.  相似文献   

2.
The uptake of L-phenylalanine into brush border microvilli vesicles and basolateral plasma membrane vesicles isolated from rat kidney cortex by differential centrifugation and free flow electrophoresis was investigated using filtration techniques. Brush border microvilli but not basolateral plasma membrane vesicles take up L-phenylalanine by an Na+-dependent, saturable transport system. The apparent affinity of the transport system for L-phenylalanine is 6.1 mM at 100 mM Na+ and for Na+ 13mM at 1 mM L-phenylalanine. Reduction of the Na+ concentration reduces the apparent affinity of the transport system for L-phenylalanine but does not alter the maximum velocity. In the presence of an electrochemical potential difference of Na+ across the membrane (etaNao greater than etaNai) the brush border microvilli accumulate transiently L-phenylalanine over the concentration in the incubation medium (overshoot pheomenon). This overshoot and the initial rate of uptake are markedly increased when the intravesicular space is rendered electrically more negative by membrane diffusion potentials induced by the use of highly permeant anions, of valinomycin in the presence of an outwardly directed K+ gradient and of carbonyl cyanide p-trifluoromethoxyphenylhydrazone in the presence of an outward-directed proton gradient. These results indicate that the entry of L-phenylalanine across the brush border membrane into the proximal tubular epithelial cells involves cotransport with Na+ and is dependent on the concentration difference of the amino acid, on the concentration difference of Na+ and on the electrical potential difference. The exit of L-phenylalanine across the basolateral plasma membranes is Na+-independent and probably involves facilitated diffusion.  相似文献   

3.
Our laboratory has recently reported that intestinal bile acid malabsorption in cystic fibrosis (CF) is a primary mucosal cell defect. Others have suggested that elevated intracellular Ca++ levels in other cell types in CF may represent a common primary dysfunction in Ca++ efflux in these cells. We examined the possibility that intestinal bile acid absorption and Ca++ efflux in mucosal cells may be linked physiologically. Brush border membrane vesicles (BBMV) prepared from guinea pig ileum served as the experimental model to test this hypothesis. Ca++ (2.5×10?3M) present in the incubation medium did not alter the uptake of taurocholic acid (TCA) by BBMV. Also, TCA uptake into BBMV preloaded with Ca++ was not significantly different from that in BBMV not previously loaded with Ca++. Furthermore, with TCA present in the incubation medium, Ca++ efflux from preloaded BBMV was not altered. These data suggest that ileal TCA uptake, as measured by BBMV, is not dependent upon either intra- or extravesicular Ca++. Also, Ca++ efflux from BBMV is unaffected by TCA uptake. Although separate lines of evidence suggest that intestinal bile acid malabsorption and reduced plasma membrane Ca++ flux are primary defects in CF, we conclude that in the normal intestine these functions are independent physiological processes.  相似文献   

4.
Brush border membranes were isolated from rat renal cortex by a divalent cation precipitation method. L-35S-cysteine uptake into the vesicles was measured by a rapid filtration method. Only minimal binding of the amino acid to the vesicles was observed. Sodium stimulates L-cysteine uptake specifically. Anion replacement experiments, experiments in the presence of potassium/valinomycin-induced diffusion potential as well as experiments with a potential-sensitive fluorescent dye document an electrogenic sodium-dependent uptake mechanism for L-cysteine. Tracer replacement experiments as well as the fluorescence experiments indicate a preferential transport of L-cysteine. Transport of L-cysteine is inhibited by L-alanine and L-phenylalanine but not by L-glutamic acid and the L-basic amino acids. Initial, linear influx kinetics provide evidence for the existence of two transport sites. The results suggest (a) sodium-dependent mechanism(s) for L-cysteine shared by other neutral amino acids.  相似文献   

5.
The uptake of the basic amino acid, L-lysine, was studied in brush border membrane vesicles isolated from the kidney of the striped mullet (Mugil cephalus). The uptake of L-lysine was not significantly stimulated by a Na+ gradient and no overshoot was observed. However, when a proton gradient (pHo = 5.5; pHi = 8.3) was imposed across the membrane in the absence of Na+, uptake was transiently stimulated. When the proton gradient was short circuited by the proton ionophore, carbonylcyanide p-triflouromethoxyphenyl hydrazone, proton gradient-dependent uptake of lysine was inhibited. Kinetics of lysine uptake determined under equilibrium exchange conditions indicated that the Vmax increased as available protons increased (2.1 nmol/min/mg protein at pH 7.5 to 3.7 nmol/min/mg at pH 5.5), whereas the apparent Km (4.9 +/- 0.6 mM) was not altered appreciably. When membrane potential (inside negative) was imposed by K+ diffusion via valinomycin, a similar (but smaller) stimulation of lysine uptake was observed. When the membrane potential and the proton gradient were imposed simultaneously, a much higher stimulation in lysine uptake was shown, and the uptake of lysine was approximately the sum of the components measured separately. These results indicate that the uptake mechanism for basic amino acids is different from that of neutral or acidic amino acids and that the proton-motive force can provide the driving force for the uptake of L-lysine into the isolated brush border membrane vesicles.  相似文献   

6.
Ketone body uptake by renal brush border vesicles has been investigated. Ketone bodies enter into the brush border vesicles by a carrier-mediated process. The uptake is dependent on an Na+ gradient ([Na+]outside > [Na+]inside) and is electroneutral. The uptake is transport into an osmotically active space and not a binding artifact as indicated by the effect of increasing the medium osmolarity. A pH gradient (alkaline inside) also stimulates the ketone body uptake. Acetoacetate and 3-hydroxybutyrate share the same carrier as demonstrated by the accelerated exchange diffusion and mutual inhibitory effects.  相似文献   

7.
The ability to actively transport nutrients is maintained in intestinal tissues of hibernating ground squirrels compared with their active counterparts, and shows apparent upregulation in hibernators when transport rates are normalized to tissue mass. To identify the mechanisms responsible for the preservation of transport function during the extended fast of hibernation, we studiedd-glucose uptake into jejunal brush border membrane vesicles prepared from active and hibernating 13-lined ground squirrels. Hibernators were without food and showing regular bouts of torpor for at least 6 weeks before sacrifice. Electron micrographs indicated similar microvillus heights of jejunal enterocytes in the two activity states, whereas microvillus density was slightly greater in the hibernators. Glucose uptake into brush border membrane vesicles was inversely related to medium osmolarity, indicating negligible binding of substrate to brush border membrane vesicles surfaces, and intravesicular spaces were similar in hibernating and active squirrels. Glucose uptake showed strong Na+ dependency in both groups, with equivalent overshoot values in the presence of Na+. Kinetic analysis revealed a significant increase in the maximal velocity of transport (J max) in hibernators (55.9±5.6 nmol·min-1·mg-1) compared with active squirrels (36.7±5.1 nmol·min-1·mg-1,P<0.05), with no change inK m. Thus, the structure and absorptive capacity of the intestinal brush border persists in fasted hibernators, and the increase inJ max for glucose uptake during hibernation likely contributes to the enhanced Na+-dependent glucose absorption previously observed at the tissue level.Abbreviations BBM brush border membrane(s) - BBMV brush border membranes vesicles - SGLT1 Na+-glucose transporter - 3-OMG 3-orthomethylglucose - J max maximal velocity of transport - K m transporter affinity for substrate - T b body temperature  相似文献   

8.
  • 1.1. Uptake of [14C]-labelled d-glucose, l-arabinose and d-fructose by intestinal and renal brush border and basolateral membrane vesicles was studied in the absence of Na+ .
  • 2.2. The Na+-independent d-glucose transport system in these membrane vesicles was saturable, sensitive to phloretin, stereospecific and accessible only to d-glucose and d-galactose.
  • 3.3. Na+-independent l-arabinose transport was not saturable even when its concentration was raised to 300 mM and it was insensitive to phloretin.
  • 4.4. Na+-independent d-fructose transport demonstrated saturation kinetics with only renal brush border membrane vesicles, but it was not inhibited by either phloretin or phlorizin.
  • 5.5. These studies indicated that the Na+-independent carrier-mediated d-glucose/d-galactose transport system of intestinal and renal brush border and basolateral membranes is clearly not shared by other monosaccharides.
  相似文献   

9.
10.
A longstanding question about the possible dependence of transmembrane peptide transport on sodium has now been resolved. Recent studies with purified intestinal brush border membrane vesicles have shown that peptide transport across this membrane is Na+-independent and occurs by a non-concentrative mechanism. Similar studies with renal brush border membrane vesicles have established for the first time the presence of a peptide transport system in mammalian kidney. The essential characteristics of peptide transport in these two tissues are the same. However, it still remains to be seen whether a new mechanism other than the Na+-gradient, hitherto unrecognized, is involved in energizing the active transport of peptides in vivo in mammalian intestine and kidney.  相似文献   

11.
12.
13.
Vitamin D deficiency is characterized by secondary hyperparathyroidism, phosphaturia, bicarbonaturia, and generalized amino aciduria. While the site at which the phosphaturia ensues has been described to occur at the apical membrane of the renal proximal tubule, no studies are available for amino aciduria. Thus, weanling rats were fed five vitamin D-deficient diets for 4-6 weeks: (i) VLC, 0.02% Ca, 0.3% P; (ii) VLC + 1,25[OH]2D, same + 500 pmole ip for 2 days; (iii) LC, 0.45% Ca, 0.3% P; (iv) HC, 2.5% Ca, 0.3% P; and (v) VLP, 1.2% cA, 0.1% P. The normal diet contained 1.2% Ca, 0.7% P, and 2.5 micrograms% vitamin D. Amino acids, serum 25[OH]D, 1,25[OH]2D, and PTH, using a specific anti-rat PTH antibody, were measured. There were 4.65 +/- 1.1- and 10 +/- 1.39-fold increases in the urinary excretion of taurine and proline, respectively, irrespective of diet. Hypocalcemia, secondary hyperparathyroidism, and increased concentrations of urinary cAMP were demonstrated in all diets, except VLP. Taurinuria and prolinuria manifested at the renal brush border membrane. There was 21-25% and 26-39% attenuation in the peak of the overshoot of Na(+)-dependent uptake of taurine and proline, respectively, that was statistically significant as compared to that of normal diets (P less than 0.01). VLC resulted in a reduction in the Vmax of taurine (VLC, 78.26 +/- 6.88 vs normal, 115.4 +/- 6.26 pmole/mg protein/min, P less than 0.01) and proline (VLC, 402.06 +/- 31.26 vs normal, 589.49 +/- 37.42 pmole/mg protein/15 sec, P less than 0.01) uptake. Acute supplementation with pharmacological doses of 1,25[OH]2D normalized the Vmax of taurine and proline uptake, without affecting their renal excretion. The VLP diet induced and increase in the Km of taurine (VLP, 58.95 +/- 1.88 microM vs normal, 39.75 +/- 2.75 microM P less than 0.01) and proline (VLP, 116.75 +/- 8.87 microM vs normal, 76.82 +/- 7.27 microM P less than 0.01) uptake, without an associated perturbation in the Vmax of uptake. We conclude that the amino aciduria of vitamin D deficiency manifests at the apical membrane of the proximal tubule by an attenuation in the Na(+)-dependent uptake of amino acids. This is associated with a reduction in the initial rate of uptake or number of active transporters in the presence of secondary hyperparathyroidism and hypocalcemia, or a decrease in the affinity of the symport in the presence of P depletion. The data suggest the interplay of multiple factors in the causation of amino aciduria.  相似文献   

14.
Summary Taurine transport was investigated in brush border membrane vesicles isolated from renal tubules of the winter flounder (Pseudopleuronectes americanus). Taurine uptake by the vesicles was greater in the presence of NaCl as compared to uptake in KCl. The Na+-dependent taurine transport was electrogenic and demonstrated tracer replacement and inhibition by -alanine and HgCl2, indicating the presence of Na+-dependent, carrier-mediated taurine transport. In contrast to Na+-dependent taurine transport across the basolateral membrane, there was not a specific Cl dependency for transport in the brush border membrane. No evidence was obtained for Na+-independent carrier-mediated taurine transport. The possible involvement of the brush border Na+-dependent transport system in the net secretion of taurine from blood to tubular lumen in vivo (Schrock et al. 1982) is discussed.  相似文献   

15.
The uphill uptake of l-arginine by renal brush border membrane vesicles was found to be energized by a Na+ gradient (extravesicular > intravesicular) in the presence of a membrane potential (inside negative). The uptake was specific for Na+. Either a K+-diffusion potential, generated by valinomycin, or a H+-diffusion potential, generated by the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, provided the electrical driving force. The Na+ gradient-dependent l-arginine transport system was shared by specific basic amino acids and l-cystine, but not by d-arginine nor other classes of amino acids. The molecular structure of the basic amino acid recognized by the carrier was postulated.  相似文献   

16.
Affinity constant (Km) of D-glucose, L-alanine, L-aspartate, L-lysine, L-proline and nutrients coupled Na+ were determined in renal brush border membrane vesicles prepared from control and pyelonephritic rats. The Km of D-glucose, amino acids and nutrients coupled Na+ was noted to be significantly increased (p less than 0.001) in experimental animals. The Vmax of D-glucose and amino acids was determined at different concentrations of nutrients keeping extravesicular Na+ constant or at different concentrations of extravesicular Na+ keeping nutrient concentration constant. In the experimental rats the Vmax decreased significantly (p less than 0.01) when compared to control. The increased Km and decreased Vmax may be one of the underlying mechanism leading to decrease in the uptake of D-glucose and amino acids.  相似文献   

17.
The uptake of glycine in osmotically active brush border membrane vesicles (obtained by the Mg++ precipitation method) has been studied and a partial characterization of its transport system has been established. The glycine uptake in these vesicles was stimulated by the presence of sodium and in the presence of an inwardly directed Na+ -gradient glycine was accumulated inside the vesicles. The effect of Na+ was specific; other monovalent cation as Li+, K+, Rb+ and choline were uneffective in the stimulation of glycine uptake, under the same experimental conditions. Preliminary experiments show an important role of some anions on the glycine uptake. A strong inhibition in the uptake rate was found when the measurements were carried out in the presence of sodium cyclamate, while in the presence of NaSCN the measured uptake values were similar to those observed in the presence of NaCl.  相似文献   

18.
M Takano  K Inui  T Okano  R Hori 《Life sciences》1985,37(17):1579-1585
The transport of cimetidine by rat renal brush border and basolateral membrane vesicles has been studied in relation to the transport system of organic cation. Cimetidine inhibited [3H]tetraethylammonium uptake by basolateral membrane vesicles in a dose dependent manner, and the degree of the inhibition was almost the same as that by unlabeled tetraethylammonium. In contrast, cimetidine inhibited the active transport of [3H]tetraethylammonium by brush border membrane vesicles more strongly than unlabeled tetraethylammonium did. In agreement with the transport mechanism of tetraethylammonium in brush border membranes, the presence of an H+ gradient ([H+]i greater than [H+]o) induced a marked stimulation of cimetidine uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was inhibited by unlabeled tetraethylammonium. These results suggest that cimetidine can share common carrier transport systems with tetraethylammonium in renal brush border and basolateral membranes, and that cimetidine transport across brush border membranes is driven by an H+ gradient via an H+-organic cation antiport system.  相似文献   

19.
Summary Chloroquine is an antimalarial and antirheumatic lysosomotropic drug which inhibits taurine uptake into and increases efflux from cultured human lymphoblastoid cells. It inhibits taurine uptake by rat lung slices and affects the uptake and release of cystine from cystinotic fibroblasts. Speculations on its mode of action include a proton gradient effect, a non-specific alteration in membrane integrity, and membrane stabilization. In this study, the effect of chloroquine on the uptake of several amino acids by rat renal brush border membrane vesicles (BBMV) was examined. Chloroquine significantly inhibited the secondary active, NaCl-dependent component of 10µM taurine uptake at all concentrations tested, but did not change equilibrium values. Analysis of these data indicated that the inhibition was non-competitive. Taurine uptake was reduced at all osmolarities tested, but inhibition was greatest at the lowest osmolarity. Taurine efflux was not affected by chloroquine, nor was the NaCl-independent diffusional component of taurine transport. Chloroquine (1 mM) inhibited uptake of the imino acids L-proline and glycine, and the dibasic amino acid L-lysine. It inhibited the uptake of D-glucose, but not the neutral-amino acids L-alanine or L-methionine. Uptake of the dicarboxylic amino acids, L-glutamic acid and L-aspartic acid, was slightly enhanced. With regard to amino acid uptake by BBMV, these findings may support some of the currently proposed mechanisms of the action of chloroquine but further studies are indicated to determine why it affects the initial rate of active amino acid transport.  相似文献   

20.
With L-glutamine, as a representative amino acid this study was undertaken to examine the effects of substrate concentrations on initial and equilibrium amino acid uptake and intravesicular volume determined with porcine jejunal brush border membrane vesicles prepared by Mg2+-aggregation and differential centrifugation. Transport measurements (24 degrees C) were conducted by the rapid filtration manual procedure. Glutamine uptake was shown to occur into an osmotically-active space ranging between 1.09-1.58 microl/mg protein with little non-specific membrane binding. At different concentrations (in parentheses), the duration of initial glutamine uptake in both Na+ gradient and Na+-free conditions was 10 s (0.01 mM), 15 s (0.17 mM), and 20 s (1.9 and 9.4 mM), respectively. Substrate concentrations affected the duration of initial uptake, with lower substrate concentrations giving shorter duration for initial amino acid uptake. At different substrate concentrations (in parentheses), the time required to reach equilibrium glutamine uptake was 5 min (0.01 mM), 10 min (0.17 mM), and 60 min (1.9 and 9.4 mM), respectively. Thus, substrate concentrations also affected the time required to reach equilibrium uptake. The higher the substrate concentration, the longer the incubation time needed to reach equilibrium amino acid uptake. At the glutamine concentrations of 0.01, 0.17, 1.9, and 9.4 mM, the average intravesicular volume was estimated to be 1.58+/-0.21, 1.09+/-0.28, 1.24+/-0.18, and 1.36+/-0.21 microl/mg protein, respectively. Substrate concentrations had no effect (p>0.05) on the intravesicular volume of membrane vesicles. In conclusion, in the experiments on amino acid transport kinetics measured with the rapid filtration manual procedure, the incubation time used for measuring the initial uptake rate should be determined from the time course experiments conducted at the lowest substrate concentration used, whereas the intravesicular volume can be obtained from equilibrium uptake measured at any substrate concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号