首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments have been carried out using human whole-blood cultures to determine the effects of sampling times and of the duration of 5-bromodeoxyuridine (BrdUrd) treatment before fixation on sister-chromatid exchange (SCE) frequencies following exposure to mitomycin C (MMC). Cells were pulse treated for 1 h with 3 X 10(-6) M MMC at G1, and then sampled at 4-h intervals up to 88 h after stimulation of cultures with phytohemagglutinin (PHA). Results showed that this MMC treatment induced a 5-6 h proliferation delay per cell cycle, and that SCE frequencies first increased with time of fixation, peaking at 68 h, and then decreased. When cells were similarly treated with MMC, but subsequently exposed to BrdUrd for various times before fixation of cultures at 72 h, the SCE frequencies markedly increased with increasing durations of BrdUrd incubation times. These data indicate that, in mutagen-treated cultures, lymphocytes having relatively longer cell-cycle times show a higher mean frequency of SCEs. In a subsequent experiment, cells were treated for 1 h with increasing doses of MMC or 4-nitroquinoline 1-oxide (4NQO) at 0, 24, or 48 h, and then fixed at 72 h after PHA stimulation. Results showed that the optimal treatment times at which the agents could most efficiently produce SCEs were different for MMC and 4NQO, and that the dose-response curves tended to 'bend down' at very high doses; that is, treatments with very high doses induced smaller than expected numbers of SCEs. However, cells similarly treated with very high doses showed a higher, expected frequency of SCEs when sampled at 84 h, but again had a lower than expected SCE frequency when fixed at 96 h. The results indicate that there is an optimal time for sampling at which one can observe the maximum increase in SCE frequencies following mutagen exposure, and strongly suggest that the higher the dose, the later the optimal sampling time. Because of the apparent deformity of dose-response curves obtained after various treatments and sampling times, it seems necessary that extra fixation-time points be included in test protocols so as to avoid false negatives or confirm possible positives.  相似文献   

2.
The baseline sister-chromatid exchange (SCE) frequencies of human plasma lymphocyte cultures (PLC), but not pig PLC, were nearly twice as high as those of whole-blood cultures (WBC). Addition of human red blood cells (RBCs) to human PLC decreased the SCE frequency in proportion to the RBC-leukocyte co-incubation interval. When the period of RBC-leukocyte co-incubation was equivalent to the total length of the culture period (72 h), the SCE frequency was similar to that observed in WBC. Shorter co-incubation periods yielded SCE frequencies intermediate between those of PLC and WBC. Regardless of the species, cell proliferation was slower in PLC than in WBC. Experiments where RBCs were added to PLC showed that the time sequence of RBC incorporation also affects the cell-cycle progression of human and pig lymphocytes. When either human or pig RBCs were added immediately after PLC stimulation, the cell-cycle kinetics was similar to that of WBC. Shorter co-incubation periods made cell-cycle progression intermediate between PLC and WBC values. Thus, PBCs modulate the baseline frequency of SCEs in human PLC and the cell-cycle progression of both human and pig lymphocytes in a time-dependent manner. Two possible hypotheses for the heightened frequency of SCEs of human lymphocytes in RBC-free cultures were assessed. The loss of RBC-to-lymphocyte cellular contact in PLC did not influence the SCE frequencies of lymphocytes. Finally, the increase of SCEs in human PLC could not be related to differences in the generation time of lymphocytes in culture.  相似文献   

3.
The induction of sister-chromatid exchanges (SCEs) was studied in phytohemagglutinin (PHA)-stimulated human lymphocytes exposed for 1 h to mitomycin C (MMC, 3 X 10(-6) M), ethyl methanesulphonate (EMS, 2 X 10(-2) M), or 4-nitroquinoline-1-oxide (4NQO, 3 X 10(-5) M) at various cell-cycle stages of 72-h cultures. The doses of the chemical were chosen to give about 20 SCEs per cell when treated at Go. The SCE frequency increased almost linearly with MMC or EMS treatments at later times after PHA stimulation, peaking with those at 36 h (at around the first G1/S boundary in the 2 consecutive cell cycles, which was revealed by concomitant experiments), and then decreased with subsequent treatment times. Cell-cycle kinetics and the cell stages at which the cells were treated were measured by autoradiography and sister-chromatid differential staining. The data show that MMC and EMS produce larger numbers of SCEs when treated at stages closer to the beginning of S, and that the most efficient time of treatment is the G1/S boundary in the first cell cycle of the two consecutive cycles before sampling. Pulse treatment with EMS caused about 3 times larger inductions of SCEs when done at late G1/early S(G1/S boundary) in the first cell cycle compared to that at G0/early G1, whereas identical exposure to MMC at the first G1/S boundary produced only 1.5 times larger numbers of SCEs than that at G0/early G1. EMS and MMC both, however, induced 30-40% larger numbers of SCEs when treated at the G1/S boundary in the first cell cycle than when treated at the second cell cycle before sampling. On the contrary, treatment with 4NQO led to the induction of about the same numbers of SCEs even when treated at different cell-cycle stages before the second G1/S boundary. The SCE frequency in 4NQO-treated cells then decreased with subsequent treatment times.  相似文献   

4.
o-Phenylphenol (OPP), is used in Japan as a fungicide in food additives for citrus fruits. The induction of chromosome aberrations and sister-chromatid exchanges (SCEs) by OPP in cultured Chinese hamster ovary (CHO-K1) cells was studied. Cells were exposed to various concentrations of OPP ranging from 50 to 175 micrograms/ml for 3 h, and further incubated for 27 and 42 h. These incubation periods are almost equal to 2 and 3 cell cycles. SCEs and chromosome aberrations were induced by OPP at concentrations of 100, 125 and 150 micrograms/ml after the incubation for 27 h. For chromosome aberrations, chromatid breaks and exchanges there was a dose-dependent increase. Diplochromosomes due to endoreduplication were also caused by the same concentrations of OPP in a dose-dependent manner. After incubation for 42 h, chromosome aberrations were also increased by OPP at concentrations of 100 and 125 micrograms/ml, but the frequencies of SCEs were not significantly different from those of the control. These results suggest that OPP has a cytogenetic toxicity, and that the DNA damage resulting in SCEs induced by OPP is relatively short-lived and can be repaired during the longer incubation time.  相似文献   

5.
Whole heparinized blood samples from normal human donors were grown in culture media containing 10 μg/ml of bromodeoxyuridine. Lymphocytes were harvested after 58, 70, 72 and 80 h and scored for sister-chromatid exchanges (SCEs) under a fluorescence microscope. SCEs which occured during the first and second cell cycles were counted in second or third generation cells selected on the basis of their chromosome fluorescence patterns. The results of a preliminary study showed the mean SCE frequency per cell at 72 h to be 9.0 for second generation cells and 7.8 in third generation cells (P < 0.01). A second study, using culture medium with heat-inactivated fetal-calf serum, gave similar results (9.4 vs. 7.8, P 0.001) at 70 h. Therefore, the difference in SCE frequency between second and third generation cells at 70 or 72 h cannot be attributed to heat-labile substances of serum origin. An additional finding in the second study was that SCE frequencies in third division cells at 70 and80 h were the samee as those of second division cells at 58 h but significantly less (P < 0.001) than the frequency in second division cells at 70 h. These data were interpreted as arising from at least two different lymphocyte populations; one group of cells that is either slower growing or slower in phytohemagglutinin stimulation, with a higher SCE frequency which does not reach second division until 70 or 80 h, and a more rapidly dividing (or more quickly stimulated by phytohemagglutinin) population with a lower SCE frequency which reaches second division at 58 h and third division by 70–80 h. Whether or not this hypothesis is correct, the data show that SCE frequency varies significantly with cell-cycle duration. Since some carcinogens have been shown to alter cell kinetics (Craig-Holmes and Shaw, Mutation Res. 46 (1977) 375), changes in SCE frequency which are caused by a change in cell kinetics must be considered a factor in determining the mutagenicity of an agent by its ability to increase SCE frequency.  相似文献   

6.
G Speit  S Haupter 《Mutation research》1987,190(3):197-203
Penicillamine (PA), a drug used for the treatment of rheumatoid arthritis induces sister-chromatid exchanges (SCEs) and chromosome aberrations in cultivated mammalian cells. PA in concentrations from 400 micrograms/ml upward induced SCEs and proliferative delay in human blood cultures when added for the last 24 h of the culture period. In V79 Chinese hamster cells SCE induction was found after acute exposure to PA before the addition of BrdUrd and after chronic exposure during one cell cycle in the presence of BrdUrd. The effect of PA on SCE frequencies occurred both after treatment in complete medium and in serum-free medium and was not influenced by the application of an S9 mix. The simultaneous addition of peroxidase reduced the PA-induced SCEs whereas catalase did not show any effect. Chromosome analysis in the first mitosis after PA treatment revealed a significant increase in the incidence of chromosome aberrations and endoreduplication. The results are discussed with respect to the cause and the significance of the observed effects in connection with mutagenicity testing.  相似文献   

7.
The sister chromatid exchange (SCE) frequency, the cell-cycle progression analysis, and the single cell gel electrophoresis technique (SCGE, comet assay) were employed as genetic end-points to investigate the geno- and citotoxicity exerted by dicamba and one of its commercial formulation banvel (dicamba 57.71%) on Chinese hamster ovary (CHO) cells. Log-phase cells were treated with 1.0-500.0 microg/ml of the herbicides and harvested 24 h later for SCE and cell-cycle progression analyses. All concentrations assessed of both test compounds induced higher SCE frequencies over control values. SCEs increased in a non-dose-dependent manner neither for the pure compound (r=0.48; P>0.05) nor for the commercial formulation (r=0.58, P>0.05). For the 200.0 microg/ml and 500.0 microg/ml dicamba doses and the 500.0 microg/ml banvel dose, a significant delay in the cell-cycle progression was found. A regression test showed that the proliferation rate index decreased as a function of either the concentration of dicamba (r=-0.98, P<0.05) or banvel (r=-0.88, P<0.01) titrated into cultures in the 1.0-500.0 microg/ml dose-range. SCGE performed on CHO cells after a 90 min pulse-treatment of dicamba and banvel within a 50.0-500.0 microg/ml dose-range revealed a clear increase in dicamba-induced DNA damage as an enhancement of the proportion of slightly damaged and damaged cells for all concentrations used (P<0.01); concomitantly, a decrease of undamaged cells was found over control values (P<0.01). In banvel-treated cells, a similar overall result was registered. Dicamba induced a significant increase both in comet length and width over control values (P<0.01) regardless of its concentration whereas banvel induced the same effect only within 100.0-500.0 microg/ml dose range (P<0.01). As detected by three highly sensitive bioassays, the present results clearly showed the capability of dicamba and banvel to induce DNA and cellular damage on CHO cells.  相似文献   

8.
L Elbling  M Colot 《Mutation research》1986,163(2):175-180
In vitro sister-chromatid exchange (SCE) background levels and cytokinetics were compared in embryonic (whole embryo cell suspensions) and extraembryonic (yolk sac and amnion, placenta) cells of inbred and outbred strains at various gestational stages (days 12-17). Results indicate a tissue origin (embryonal, extraembryonal) related variation in the formation of baseline SCE frequencies and cytokinetics. The significant higher SCE levels in extraembryonic tissues (maximum increase of 2 X the background values of the embryo cells) were independent of mouse strain and gestational stage. An average of 4-5 SCEs/cell in embryo cells is contrasted by 7-9 SCEs/cell in extraembryo cells. Mitotic index was generally lower and average generation time longer (by 2-3 h) in extraembryonic tissue cells. No significant differences in SCE frequencies and no changes in cytokinetics were detected at the BrdU concentrations used (1.2-4.8 micrograms/ml). The reason for the inter-tissue differences in baseline SCE is still not clear.  相似文献   

9.
We tested the genotoxicity of 3,5,4'-trihydroxystilbene (resveratrol), a polyphenolic phytoalexin found in grapes, in a bacterial reverse mutation assay, in vitro chromosome aberration (CA) test, in vitro micronucleus (MN) test, and sister chromatid exchange (SCE) test. Resveratrol was negative in the strains we used in the bacterial reverse mutation assay (S. typhimurium TA98 and TA100 and E. coli WP2uvrA) in the absence and presence of a microsomal metabolizing system. It induced structural CAs at 2.5-20 microg/ml and showed weak aneuploidy induction in a Chinese hamster lung (CHL) cell line. It induced MN cells and polynuclear and karyorrhectic cells after 48h treatments in the in vitro MN test. In the SCE test, resveratrol caused a clear cell-cycle delay; at 10 microg/ml, the cell cycle took twice as long as it did in the control. Resveratrol induced SCEs dose-dependently at up to 10 microg/ml, at which it increased SCE six-fold, and the number was almost as large as mitomycin C, a strong SCE inducer. No second mitoses were observed at 20 microg/ml even after 54h. Cell cycle analysis by FACScan indicated that resveratrol caused S phase arrest, and 48h treatment induced apoptosis. Our results suggest that resveratrol may preferentially induce SCE but not CA, that is, it may cause S phase arrest only when SCEs are induced.  相似文献   

10.
Genotoxic effects of o-phenylphenol metabolites in CHO-K1 cells   总被引:1,自引:0,他引:1  
The effects of microsomal activation and/or deactivation on the induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) in cultured Chinese hamster ovary cells (CHO-K1 cells) by o-phenylphenol (OPP) were studied, and concurrently the metabolites were determined. After a 3-h incubation in the presence of 15% S9 mix (45 microliters/ml of S9), OPP (25-150 micrograms/ml) dose-independent SCEs and chromosomal aberrations were induced, while the amount of phenylhydroquinone (PHQ) metabolite produced from OPP did not increase linearly in the higher doses. The maximum induction of chromosomal aberrations was 18% at the 150 micrograms/ml dose, and of SCEs 13.8/cell at 75 micrograms/ml. The corresponding control values were 3% and 5.8/cell. The lowest dose required to induce SCEs in the presence of S9 mix was 25 micrograms/ml. Changing the percent of S9 mix (0-50%) while holding the OPP dose constant (100 micrograms/ml) produced a correlation between SCEs and the production of PHQ. PHQ caused cytogenetic effects both with and without S9 mix, however, in the absence of S9 mix it was more lethal and was oxidized to phenylbenzoquinone (PBQ). These results suggest that the enhanced cytogenetic effects of OPP by the addition of S9 mix correlated with the amount of PHQ produced or with the further oxides of PHQ such as phenylsemiquinone and/or PBQ which are capable of being produced from PHQ spontaneously or by the mixed-function oxidase system.  相似文献   

11.
In contrast with earlier report on the induction of sister-chromatid exchanges (SCEs) by SH compounds in cell lines of the Chinese hamster, cysteine, cysteamine and cystamine did not cause an increase of the SCE frequency in human lymphocyte cultures. Differences in the treatment protocols or variations of the Brd Urd concentration had no effect on the induction of SCEs by these substances. The inclusion of H2O2 and comparative investigations with V79 cells of the Chinese hamster showed that the probable reason for the SCE induction by SH compounds is the inability of the cells to degrade H2O2.Furthermore, for cystamine it became clear that additional effects must exist besides the induction of SCEs through H2O2.The present study underlines the fact that the examination of a substance within one cell system does not necessarily permit a reliable statement about the DNA-damaging property of this substance.  相似文献   

12.
The effects of 5-azacytidine (5-Aza-C), alone and in combination with mitomycin C, were measured on sister-chromatid exchange (SCE) formation and DNA methylation in different genomic regions of Chinese hamster ovary cells and in Chinese hamster cells containing amplified, dihydrofolate reductase sequences and resistant to methotrexate. 5-Aza-C, when present for the penultimate preharvest cell cycle, induced SCEs in a manner consistent with a directly measured reduction in deoxycytosine methylation in cellular DNA. At higher 5-Aza-C concentrations, cell cycling was inhibited and both SCE induction and DNA demethylation tended to level off. Under appropriate conditions, 5-Aza-C also potentiated the induction of SCEs by mitomycin C. 5-Aza-C-induced DNA demethylation could also be detected in the vicinity of different DNA sequences with the use of comparative HpaII/MspI digestion, DNA blotting, and molecular probes. The efficiency of an individual demethylation event in inducing SCE induction appeared to be very low, compared with alkylating agents such as 8-methoxypsoralen, suggesting that SCE induction by 5-Aza-C might be an indirect effect from long range changes induced in cellular DNA or chromatin conformation.  相似文献   

13.
Hypersensitivity of Bloom's syndrome fibroblasts to N-ethyl-N-nitrosourea   总被引:5,自引:0,他引:5  
Fibroblast cells from two Japanese patients with Bloom's syndrome (BS) and normal donors were studied for the inactivation of colony-forming ability and the induction of sister-chromatid exchanges (SCEs) after N-ethyl-N-nitrosourea (ENU) treatment. The reduction of ENU-induced SCEs as a function of post-treatment incubation time was also compared between BS and normal fibroblasts. BS cells were approximately 4 times more sensitive than normal cells to the lethal effect of ENU and remarkably hypersensitive to the SCE induction by ENU. The post-treatment incubation of ENU-treated normal cells in the fresh medium resulted in a time-dependent decrease of the SCE level until 6 h after which time the SCE level remained the plateau of about 50% of the initial level. In contrast, the ENU-induced SCEs in BS cells decreased much more slowly with post-treatment incubation time and its half life was 24 h. These results collectively support the view that BS cells may be defective in the rapid repair of certain type(s) of DNA damages induced by ENU.  相似文献   

14.
Possible induction of sister-chromatid exchanges by butachlor, paraquat, phorate and monocrotophos was examined in primary rat tracheal epithelial (RTE) and Chinese hamster ovary (CHO) cells. At dose levels that killed less than 50% of the cell population, monocrotophos induced SCEs positively in CHO and RTE cells, while paraquat was positive only in RTE cells. In two trials of the same experiment, paraquat and butachlor in CHO cells, and phorate in either RTE or CHO cells failed to induce a significant number of SCEs at any dose level within the ranges assayed. On the other hand, in RTE cells, butachlor induced a significant number of SCEs at a dose level of 5 micrograms/ml in one trial, but was insignificant in another. The inductions in these assays were, however, dose-dependent. The addition of S9 mixture did not alter the results of SCE induction by these 4 pesticides in CHO cells. RTE cells were more vulnerable to paraquat in cytotoxicity and SCE assays than CHO cells. Cytotoxicities were ranked as butachlor greater than phorate greater than paraquat greater than monocrotophos to CHO cells and paraquat greater than butachlor greater than phorate greater than monocrotophos to RTE cells. Significant cell cycle delays were only found in the treatments with the highest dose levels of butachlor, paraquat and phorate in CHO cells. In addition, this is the first report on SCE induction in RTE cells.  相似文献   

15.
C Nowak  G Obe 《Mutation research》1985,149(3):469-474
Human peripheral lymphocytes and Chinese hamster ovary cells were treated in the G1 phase of the cell cycle with the trifunctional alkylating agent trenimon (TRN) and post-treated with a single-strand specific endonuclease from Neurospora crassa (NE). TRN induces chromosomal aberrations of the chromatid type (CA) and sister-chromatid exchanges (SCE). NE post-treatment leads to an elevation of the frequencies of CA but not of SCEs. This indicates that TRN induced CA are the result of DNA double-strand breaks and that the SCEs originate from other types of lesions, most probably base damage.  相似文献   

16.
Culture of cells in high exogenous levels (>10–4 M) of bromodeoxyuridine (BrdUrd) or thymidine will increase the baseline sister chromatid exchange (SCE) frequency. The effect is thought to be related to the balance of the DNA precursors thymidine and deoxycytidine. Exogenous addition of deoxycytidine will reverse this effect. Single and twin SCEs were analysed in Colcemid-induced tetraploid Chinese hamster ovary cells exposed to different concentrations of BrdUrd to determine at what stage SCEs are induced by high levels of BrdUrd. In cells exposed to low concentrations of BrdUrd (10–5 M), equal numbers of SCEs were induced in each of the two cell cycles. With increasing concentrations of BrdUrd (10–4 to 2×10–4 M), SCE frequency increased in both cell cycles, but far more SCEs were induced in the second cell cycle. Deoxycytidine (2×10–4 M) reduced the frequency of SCEs primarily by reducing the frequency of SCEs induced in the second cell cycle. Treatment with 3-aminobenzamide (3AB), a potent inhibitor of poly(ADP-ribose) polymerase, produced effects similar to exposure to high levels of BrdUrd including inducing SCEs in the second replication cycle. This suggests a similar mechanism of action. Deoxycytidine had no effect on 3AB-induced SCEs, however, and there was no interaction between 3AB and high exogenous levels of BrdUrd in SCE induction. Thus these two agents probably act through different mechanisms.  相似文献   

17.
In these studies we have used wild-type Chinese hamster ovary cells (AA8) and a mutant cell line (UV-41) deficient in excision repair to compare sister chromatid exchange (SCE) induction after X irradiation under oxic and hypoxic conditions. X irradiation of AA8 cells under oxic conditions induced only a slight increase in SCEs, whereas at each dose tested a significantly greater number of SCEs were induced in hypoxic cells. When AA8 cells were X-irradiated and the addition of bromodeoxyuridine (BrdU) was delayed for 20 h to allow DNA lesions to be repaired, the levels of SCEs detected in both oxic and hypoxic cells returned to background levels. X irradiation of UV-41 cells also induced only a slight increase of SCEs in oxic cells, whereas a significant number of SCEs were induced in hypoxic cells. However, in contrast to results with AA8 cells, when hypoxic UV-41 cells were X-irradiated and the addition of BrdU was delayed for 20 h, the number of SCEs remained significantly above background levels. In combination with previous alkaline elution data, these results are consistent with the possibility that DNA-protein crosslinks are responsible for the SCEs induced by X irradiation of hypoxic cells. Irrespective of the mechanism(s) involved, the data presented suggest that the SCE assay may potentially aid in the detection of hypoxic tumor cells.  相似文献   

18.
Summary Peripheral blood samples from Sprague-Dawley rats gave successful lymphocyte growth in GIBCO: IA, RPMI 1640, and Eagle's minimum essential medium (MEM) culture media. Various growth conditions, cytokinetics, and sister chromatic exchange (SCE) induction were studied using reconstituted GIBCO 1A only. Neither methoxyflurane anesthesia of the rats before sampling nor washing of the cells with phosphate buffered saline affected the mitotic index. Cultures treated with [3H]thymidine showed the lymphocytes entering into DNA synthesis after approximately 24 h. The time at which BUdR (5-bromo-2′ deoxyuridine) was added, i.e. 0 vs. 24 h incubation, had minimal effect on the mitotic index of cultures harvested at 48 h. However, when harvest was extended to 72 h, mitotic activity was greater in the cultures treated with BUdR at 24 h. No significant differences in mitotic index and the number of average lymphocyte division were detected in cultures exposed to 0.3 to 0.5 μg/ml BUdR at 24 h and harvested at 72 h. Although SCE frequencies increased in the presence of BUdR, the baseline level of SCEs was estimated to be 5 to 6/cell. Average generation time of the lymphocytes dividing between 48 and 72 h was 16.5 h. Because of its simplicity of culture and the reproducible nature of its in vitro growth kinetics, the Sprague-Dawley rat lymphocyte is a suitable model for cytogenetic investigations.  相似文献   

19.
The effect of low pH on sister-chromatid exchanges (SCE), chromosomal aberrations (CA), and the cell cycle were investigated in Chinese hamster cells. The cells were treated in media over the pH range 7.2–5.4 during 24-h continuous or 3-h pulse treatments. In Chinese hamster ovary K1 cells, slight increases in SCE frequency were induced by 3-h pulse treatment with a 28-h recovery time. In Chinese hamster V79 379A cells, similar slight increases in SCE frequency were observed with both treatments. A severe delay in the cell cycle was noted in both cell types. DNA analysis with flow cytometry indicated that the cell cycle delay occured in S phase. CA were observed in the first metaphase. Multiple fixation times over a 27-h period were used to determine whether or not CA could be induced in cells exposed to low pH medium in more than one part of the cell cycle. Only a few chromatid gaps were induced when the cells were fixed at 0–9 h after the 3-h treatment, most probably representing cells that were treated in their G2 or late S phase. CA were induced in cells fixed between 12 and 27 h after the 3-h treatment. These cells were most probably treated in early S phase, in G1, or in the previous G2/M. These results suggest that low pH clastogenicity is S-dependent.  相似文献   

20.
The influence of low doses of 5-bromodeoxyuridine (BrdU) on the occurrence of sister chromatid exchanges (SCEs) during the first cell cycle, when unsubstituted DNA templates replicate in the presence of the halogenated nucleoside (SCE1) has been assessed in third mitosis (M3) Chinese hamster ovary (CHO) cells showing three-way differential (TWD) staining. In addition, lower concentrations of BrdU, not detectable by Giemsa staining, have been tested by a high resolution immunoperoxidase method (anti-BrdU monoclonal antibody) and SCEs were scored in second mitosis (M2) cells. Our findings was a dose-response curve for SCE1 that allows an estimated mean spontaneous yield of 1.32/cell per cell cycle by extrapolation to zero concentration of BrdU. On the other hand, when the total SCE frequency corresponding to the first and second rounds of replication (SCE1+SCE2) found in M3 chromosomes was compared with the yield of SCEs scored in M2 cells grown in BrdU at doses lower than 1 M no further reduction was achieved. This seems to indicate that SCEs can occur spontaneously in this cell line, though the estimated frequency is higher than that reported in vivo.by S. Wolff  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号