首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 596 毫秒
1.
You M  Li E  Hristova K 《Biochemistry》2006,45(17):5551-5556
The Gly380 --> Arg mutation in the TM domain of fibroblast growth factor receptor 3 (FGFR3) of the RTK family is linked to achondroplasia, the most common form of human dwarfism. The molecular mechanism of pathology induction is under debate, and two different mechanisms have been proposed to contribute to pathogenesis: (1) Arg380-mediated FGFR3 dimer stabilization and (2) slow downregulation of the activated mutant receptors. Here we show that the Gly380 --> Arg mutation does not alter the dimerization energetics of the FGFR3 transmembrane domain in detergent micelles or in lipid bilayers. This result indicates that pathogenesis in achondroplasia cannot be explained simply by a higher dimerization propensity of the mutant FGFR3 TM domain, thus highlighting the importance of the observed slow downregulation in phenotype induction.  相似文献   

2.
The fibroblast growth factor receptor 3 (FGFR3) is a member of the FGFR subfamily of the receptor tyrosine kinases (RTKs) involved in signaling across the plasma membrane. Generally, ligand binding leads to receptor dimerization and activation. Dimerization involves the transmembrane (TM) domain, where mutations can lead to constitutive activation in certain cancer types and also in skeletal malformations. Thus, it has been postulated that FGFR homodimerization must be inherently weak to allow regulation, a feature reminiscent of α and β integrin TM interactions. However, we show herein that in FGFR3‐TM, four C‐terminal residues, CRLR, have a profound destabilizing effect in an otherwise strongly dimerizing TM peptide. In the absence of these four residues, the dimerizing propensity of FGFR3‐TM is comparable to glycophorin, as shown using various detergents. In addition, the expected enhanced dimerization induced by the mutation associated to the Crouzon syndrome A391E, was observed only when these four C‐terminal residues were present. In the absence of these four residues, A391E was dimer‐destabilizing. Finally, using site specific infrared dichroism and convergence with evolutionary conservation data, we have determined the backbone model of the FGFR3‐TM homodimer in model lipid bilayers. This model is consistent with, and correlates with the effects of, most known pathological mutations found in FGFR‐TM.  相似文献   

3.
Li E  You M  Hristova K 《Biochemistry》2005,44(1):352-360
Lateral dimerization of membrane proteins has evolved as a means of signal transduction across the plasma membrane for all receptor tyrosine kinases (RTKs). The transmembrane (TM) domains of RTKs are proposed to play an important role in the dimerization process. We have investigated whether the TM domains of one RTK, fibroblast growth factor receptor 3 (FGFR3), dimerize in lipid vesicles in the absence of the extracellular domains and ligands. We have performed sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with peptides produced via solid-phase peptide synthesis that correspond to the TM domain of FGFR3. We have carried out Forster resonance energy transfer (FRET) measurements using two donor-acceptor pairs, fluorescein/rhodamine and Cy3/Cy5, as a function of peptide concentration and donor-to-acceptor mole ratios. Our results suggest that FGFR3 TM domains form sequence-specific dimers in lipid bilayers. However, the dimerization propensity of FGFR3 TM domain is much weaker than the dimerization propensity of glycophorin A (GpA), the well-characterized "membrane dimer standard". We discuss our findings in the context of cell signaling across the plasma membrane and diseases or disorders that occur due to single amino acid mutations in the TM domain of FGFR3.  相似文献   

4.
A crucial aspect of ligand-mediated receptor activation and shut-down is receptor internalization and degradation. Here we compared the ubiquitylation of either wild type or a K508A 'kinase-dead' mutant of fibroblast growth factor receptor 3 (FGFR3) with that of its naturally occurring overactive mutants, G380R as in achondroplasia, or K650E involved in thanatophoric dysplasia. Fibroblast growth factor receptors ubiquitylation was found to be directly proportional to their intrinsic tyrosine kinase activity, both of which could be blocked using kinase inhibitors. Despite excessive ubiquitylation, both overactive mutants failed to be efficiently degraded, even when challenged with ligand or overexpression of c-Cbl, a putative E3 ligase. We conclude that phosphorylation is essential for FGFR3 ubiquitylation, but is not sufficient to induce downregulation of its internalization resistant mutants.  相似文献   

5.
The fibroblast growth factor receptor 3 (FGFR3) secretory pathway includes N-linked glycosylation in the endoplasmic reticulum where a stringent quality control system ensures that only correctly folded receptor reaches the cell surface from where mature-functional FGFR3 signals upon ligand-mediated dimerization. We have previously shown that the increased kinase activity associated with FGFR3 bearing the thanatophoric dysplasia type II (TDII) mutation hampers its maturation, enabling the receptor to signal from the endoplasmic reticulum. Here we investigate if this biosynthetic disturbance could be explained by premature dimerization of the receptor. Our observations show that a limited fraction of the immature high-mannose, mutant receptor dimerizes in the early secretory pathway, as does the immature wild type FGFR3. In contrast, the mature fully glycosylated wild type receptor reaches the cell surface as monomer suggesting that dimerization is a transient event. The kinase activity of mutant FGFR3 is not required for dimerization to occur, although it increases dimerization efficiency. Furthermore, mutant FGFR3 trans-phosphorylates the immature wild type receptor indicating that dimerization occurs in the endoplasmic reticulum. Visualization of protein interaction inside the secretory pathway confirms receptor dimerization. In addition, it shows that both wild type and TDII FGFR3 interact with the mannose-specific lectin ERGIC-53. We conclude that transient dimerization is an obligatory step in FGFR3 biosynthesis acting as a pre-assembly quality control mechanism. Furthermore, the TDII/ERGIC-53 complex formation may function as a checkpoint for FGFR3 sorting downstream the endoplasmic reticulum. These findings have implications for understanding the pathogenesis of FGFR3-related disorders.  相似文献   

6.
Mutations in the transmembrane (TM) domains of receptor tyrosine kinases (RTKs) have been implicated in the induction of pathological phenotypes. These mutations are believed to stabilize the RTK dimers, and thus promote unregulated signaling. However, the energetics behind the pathology induction has not been determined. An example of a TM domain pathogenic mutation is the Ala391-->Glu mutation in fibroblast growth factor receptor 3 (FGFR3), linked to Crouzon syndrome with acanthosis nigricans, as well as to bladder cancer. Here, we determine the free energy of dimerization of wild-type and mutant FGFR3 TM domain in lipid bilayers using F?rster resonance energy transfer, and we show that hydrogen bonding between Glu391 and the adjacent helix in the dimer is a feasible mechanism for dimer stabilization. The measured change in the free energy of dimerization due to the Ala391-->Glu pathogenic mutation is -1.3 kcal/mol, consistent with previous reports of hydrogen bond strengths in proteins. This is the first quantitative measurement of mutant RTK stabilization in a membrane environment. We show that this seemingly modest value can lead to a large increase in dimer fraction and thus profoundly affect RTK-mediated signal transduction.  相似文献   

7.
Fibroblast growth factor receptor 3 (FGFR3) is a receptor tyrosine kinase that plays an important role in long bone development. The G380R mutation in FGFR3 transmembrane domain is known as the genetic cause for achondroplasia, the most common form of human dwarfism. Despite many studies, there is no consensus about the exact mechanism underlying the pathology. To gain further understanding into the physical basis behind the disorder, here we measure the activation of wild-type and mutant FGFR3 in mammalian cells using Western blots, and we analyze the activation within the frame of a physical-chemical model describing dimerization, ligand binding, and phosphorylation probabilities within the dimers. The data analysis presented here suggests that the mutation does not increase FGFR3 dimerization, as proposed previously. Instead, FGFR3 activity in achondroplasia is increased due to increased probability for phosphorylation of the unliganded mutant dimers. This finding has implications for the design of targeted molecular treatments for achondroplasia.  相似文献   

8.
The G380R mutation in the transmembrane domain of fibroblast growth factor receptor 3 (FGFR3) causes achondroplasia, the most common form of human dwarfism. Achondroplasia is a heterozygous disorder, and thus the affected individuals express both wild-type and mutant FGFR3. Yet heterodimerization in achondroplasia has not been characterized thus far. To investigate the formation of FGFR3 heterodimers in cellular membranes, we designed an FGFR3 construct that lacks the kinase domain, and we monitored the formation of inactive heterodimers between this construct and wild-type and mutant FGFR3. The formation of the inactive heterodimers depleted the pool of full-length receptors capable of forming active homodimers and ultimately reduced their phosphorylation. By analyzing the effect of the truncated FGFR3 on full-length receptor phosphorylation, we demonstrated that FGFR3 WT/G380R heterodimers form with lower probability than wild-type FGFR3 homodimers at low ligand concentration. These results further our knowledge of FGFR3-associated bone disorders.  相似文献   

9.
The Gly380Arg mutation in FGFR3 is the genetic cause for achondroplasia (ACH), the most common form of human dwarfism. The mutation has been proposed to increase FGFR3 dimerization, but the dimerization propensities of wild-type and mutant FGFR3 have not been compared. Here we use quantitative imaging FRET to characterize the dimerization of wild-type FGFR3 and the ACH mutant in plasma membrane-derived vesicles from HEK293T cells. We demonstrate a small, but statistically significant increase in FGFR3 dimerization due to the ACH mutation. The data are consistent with the idea that the ACH mutation causes a structural change which affects both the stability and the activity of FGFR3 dimers in the absence of ligand.  相似文献   

10.
Achondroplasia and thanatophoric dysplasia are human chondrodysplasias caused by mutations in the fibroblast growth factor receptor 3 (FGFR3) gene. We have developed an immortalized human chondrocyte culture model to study the regulation of chondrocyte functions. One control and eight mutant chondrocytic lines expressing different FGFR3 heterozygous mutations were obtained. FGFR3 signaling pathways were modified in the mutant lines as revealed by the constitutive activation of the STAT pathway and an increased level of P21(WAF1/CIP1) protein. This model will be useful for the study of FGFR3 function in cartilage studies and future therapeutic approaches in chondrodysplasias.  相似文献   

11.
The energetics of transmembrane (TM) helix dimerization in membranes and the thermodynamic principles behind receptor tyrosine kinase (RTK) TM domain interactions during signal transduction can be studied using Förster resonance energy transfer (FRET). For instance, FRET studies have yielded the stabilities of wild-type fibroblast growth factor receptor 3 (FGFR3) TM domains and two FGFR3 pathogenic mutants, Ala391Glu and Gly380Arg, in the native bilayer environment. To further our understanding of the molecular mechanisms of deregulated FGFR3 signaling underlying different pathologies, we determined the effect of the Gly382Asp FGFR3 mutation, identified in a multiple myeloma cell line, on the energetics of FGFR3 TM domain dimerization. We measured dimerization energetics using a novel FRET acquisition and processing method, termed “emission-excitation FRET (EmEx-FRET),” which improves the precision of thermodynamic measurements of TM helix association. The EmEx-FRET method, verified here by analyzing previously published data for wild-type FGFR3 TM domain, should have broad utility in studies of protein interactions, particularly in cases when the concentrations of fluorophore-tagged molecules cannot be controlled.  相似文献   

12.
13.
Fibroblast growth factor receptor 3 (FGFR3) seems to play an inhibitory role in bone development, as activating mutations in the gene underlie disorders such as achondroplasia and thanatophoric dysplasia. Findings from multiple myeloma (MM) indicate that FGFR3 also can act as an oncogene, and mutation of codon 249 in the fibroblast growth factor receptor 3 (FGFR3) gene was recently detected in 3/12 primary cervical carcinomas. We have analysed 91 cervical carcinomas for this specific S249C mutation using amplification created restriction site methodology (ACRS), and detected no mutations. Immunohistochemistry was performed on 73 of the tumours. Reduced protein staining was seen in 43 (58.8%) samples. Six of the tumours (8.2%) revealed increased protein staining compared with normal cervical tissue. These patients had a better prognosis than those with reduced or normal levels, although not statistically significant.This report weakens the hypothesis of FGFR3 as an oncogene of importance in cervical carcinomas.  相似文献   

14.
Thanatophoric dysplasia type I (TDI) is a lethal human skeletal growth disorder with a prevalence of 1 in 20,000 to 1 in 50,000 births. TDI is known to arise because of five different mutations, all involving the substitution of an amino acid with a cysteine in fibroblast growth factor receptor 3 (FGFR3). Cysteine mutations in receptor tyrosine kinases (RTKs) have been previously proposed to induce constitutive dimerization in the absence of ligand, leading to receptor overactivation. However, their effect on RTK dimer stability has never been measured experimentally. In this study, we characterize the effect of three TDI mutations, Arg248Cys, Ser249Cys, and Tyr373Cys, on FGFR3 dimerization in mammalian membranes, in the absence of ligand. We demonstrate that the mutations lead to surprisingly modest dimer stabilization and to structural perturbations of the dimers, challenging the current understanding of the molecular interactions that underlie TDI.  相似文献   

15.
Fibroblast growth factor receptor 3 (FGFR3) is a key regulator of skeletal development and activating mutations in FGFR3 cause skeletal dysplasias, including hypochondroplasia, achondroplasia and thanatophoric dysplasia. The introduction of the Y367C mutation corresponding to the human Y373C thanatophoric dysplasia type I (TDI) mutation into the mouse genome, resulted in dwarfism with a skeletal phenotype remarkably similar to that of human chondrodysplasia. To investigate the role of the activating Fgfr3 Y367C mutation in auditory function, the middle and inner ear of the heterozygous mutant Fgfr3Y367C/+ mice were examined. The mutant Fgfr3Y367C/+ mice exhibit fully penetrant deafness with a significantly elevated auditory brainstem response threshold for all frequencies tested. The inner ear defect is mainly associated with an increased number of pillar cells or modified supporting cells in the organ of Corti. Hearing loss in the Fgfr3Y367C/+ mouse model demonstrates the crucial role of Fgfr3 in the development of the inner ear and provides novel insight on the biological consequences of FGFR3 mutations in chondrodysplasia.  相似文献   

16.
The fibroblast growth factor-receptor 3 (FGFR3) Lys650 codon is located within a critical region of the tyrosine kinase-domain activation loop. Two missense mutations in this codon are known to result in strong constitutive activation of the FGFR3 tyrosine kinase and cause three different skeletal dysplasia syndromes-thanatophoric dysplasia type II (TD2) (A1948G [Lys650Glu]) and SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans) syndrome and thanatophoric dysplasia type I (TD1) (both due to A1949T [Lys650Met]). Other mutations within the FGFR3 tyrosine kinase domain (e.g., C1620A or C1620G [both resulting in Asn540Lys]) are known to cause hypochondroplasia, a relatively common but milder skeletal dysplasia. In 90 individuals with suspected clinical diagnoses of hypochondroplasia who do not have Asn540Lys mutations, we screened for mutations, in FGFR3 exon 15, that would disrupt a unique BbsI restriction site that includes the Lys650 codon. We report here the discovery of three novel mutations (G1950T and G1950C [both resulting in Lys650Asn] and A1948C [Lys650Gln]) occurring in six individuals from five families. Several physical and radiological features of these individuals were significantly milder than those in individuals with the Asn540Lys mutations. The Lys650Asn/Gln mutations result in constitutive activation of the FGFR3 tyrosine kinase but to a lesser degree than that observed with the Lys540Glu and Lys650Met mutations. These results demonstrate that different amino acid substitutions at the FGFR3 Lys650 codon can result in several different skeletal dysplasia phenotypes.  相似文献   

17.
Two mutations in FGFR3, G380R and G375C are known to cause achondroplasia, the most common form of human dwarfism. The G380R mutation accounts for 98% of the achondroplasia cases, and thus has been studied extensively. Here we study the effect of the G375C mutation on the phosphorylation and the cross-linking propensity of full-length FGFR3 in HEK 293 cells, and we compare the results to previously published results for the G380R mutant. We observe identical behavior of the two achondroplasia mutants in these experiments, a finding which supports a direct link between the severity of dwarfism phenotypes and the level and mechanism of FGFR3 over-activation. The mutations do not increase the cross-linking propensity of FGFR3, contrary to previous expectations that the achondroplasia mutations stabilize the FGFR3 dimers. Instead, the phosphorylation efficiency within un-liganded FGFR3 dimers is increased, and this increase is likely the underlying cause for pathogenesis in achondroplasia. We further investigate the G346E mutation, which has been reported to cause achondroplasia in one case. We find that this mutation does not increase FGFR3 phosphorylation and decreases FGFR3 cross-linking propensity, a finding which raises questions whether this mutation is indeed a genetic cause for human dwarfism.  相似文献   

18.
Fibroblast growth factor receptors 3 (FGFR3) with K644M/E substitutions are associated to the severe skeletal dysplasias: severe achondroplasia with developmental delay and achanthosis nigricans(SADDAN) and thanatophoric dysplasia(TDII). The high levels of kinase activity of the FGFR3-mutants cause uncompleted biosynthesis that results in the accumulation of the immature/mannose-rich, phosphorylated receptors in the endoplasmic reticulum (ER) and STATs activation. Here we report that FGFR3 mutants activate Erk1/2 from the ER through an FRS2-independent pathway: instead, a multimeric complex by directly recruiting PLCgamma, Pyk2 and JAK1 is formed. The Erk1/2 activation from the ER however, is PLCgamma-independent, since preventing the PLCgamma/FGFR3 interaction by the Y754F substitution does not inhibit Erks. Furthermore, Erk1/2 activation is abrogated upon treatment with the Src inhibitor PP2, suggesting a role played by a Src family member in the pathway from the ER. Finally we show that the intrinsic kinase activity by mutant receptors is required to allow signaling from the ER. Overall these results highlight how activated FGFR3 exhibits signaling activity in the early phase of its biosynthesis and how segregation in a sub-cellular compartment can affect the FGFR3 multi-faceted capacity to recruit specific substrates.  相似文献   

19.
In vivo formation and stability of engineered disulfide bonds in subtilisin   总被引:9,自引:0,他引:9  
Computer modeling suggested that a disulfide bond could be built into Bacillus amyloliquefaciens subtilisin between positions 22 (wild-type, Thr) and 87 (Ser) or between positions 24 (Ser) and 87 (Ser). Single cysteines were introduced into this cysteine-free protease at positions 22, 24, or 87 by site-directed mutagenesis of the cloned subtilisin gene. The corresponding double-cysteine mutants were constructed, and recombinant plasmids were expressed in Bacillus subtilis. Double-cysteine mutant enzymes were secreted as efficiently as wild-type, and disulfide bonds were formed quantitatively in vivo. These disulfide bonds were introduced approximately 24 A away from the catalytic site and had no detectable effect on either the specific activities or the pH optima of the mutant enzymes. The equilibrium constants for the reduction of the mutant disulfide bonds by dithiothreitol were determined to be 82 +/- 22 and 20 +/- 5 for Cys22/Cys87 and Cys24/Cys87, respectively. Studies of autoproteolytic inactivation of wild-type subtilisin support a relationship between autolytic stability and conformational stability of the protein. The stabilities of Cys24/Cys87 and wild-type enzymes to autolysis were essentially the same; however, Cys22/Cys87 was actually less stable to autolysis. Reduction of the disulfide cross-bridge lowered the autolytic stability of both double-cysteine mutants relative to their disulfide forms. This correlates with a lowered autolytic stability for the Cys22 and Cys87 single-cysteine mutants, and the fact that an intramolecular hydrogen bond between the hydroxyl groups of Thr22 and Ser87 is likely to be disrupted in the Cys22 and Cys87 single-cysteine mutant proteins.  相似文献   

20.
Achondroplasia (ACH), the most common form of short-limbed dwarfism, and its related disorders are caused by constitutively activated point-mutated fibroblast growth factor receptor 3 (FGFR3). Recent studies have provided a large body of evidence to prove chondrocyte proliferation and differentiation in these disorders. However, little is known about the possible effects of the FGFR3 mutants on apoptosis of chondrocytes. In the present study, we analyzed apoptosis using a chondrogenic cell line, ATDC5, expressing the FGFR3 mutants causing ACH and thanatophoric dysplasia, which is a more severe neonatal lethal form comprising type I and type II. We found that the introduction of these mutated FGFR3s into ATDC5 cells decreased mRNA expression of parathyroid hormone-related peptide (PTHrP) and induced apoptosis. Importantly, replacement of PTHrP prevented the apoptotic changes in ATDC5 cells expressing ACH mutant. Insulin-like growth factor (IGF)-I, which is an important mediator of growth hormone (GH), also reduced apoptosis in ATDC5 cells expressing ACH mutant. IGF-I prevented apoptosis through the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways, indicating the mechanisms by which GH treatment improves disturbed bone growth in ACH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号