首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In previous studies we have shown that platelets take up low molecular weight molecules from the medium by fluid phase endocytosis, a phenomenon that we previously have used to load trehalose into human platelets, after which we have successfully freeze-dried them. We now extend those findings to a species to be used in animal trials of freeze-dried platelets:pigs. Further, we report results of studies aimed at elucidating the mechanism of the uptake. Temperature dependence of fluid-phase endocytosis was determined in pig platelets, using lucifer yellow carbohydrazide (LY) as a marker. A biphasic curve of marker uptake versus temperature was obtained. The activation energy was significantly higher above 22 °C (18.7±1.8 kcal/mol) than below that critical temperature (7.5±1.5 kcal/mol). The activation energy of fluid phase endocytosis in human platelets was 24.1±1.6 kcal/mol above 15 °C. In order to establish a correlation between the effect of temperature on fluid phase endocytosis and the membrane physical state, Fourier transform infrared spectroscopy (FTIR) and fluorescence anisotropy experiments were conducted. FTIR studies showed that pig platelets exhibit a main membrane phase transition at approximately 12 °C, and two smaller transitions at 26 and 37 °C. Anisotropy experiments performed with 1,6 diphenyl-1,3,5 hexatriene (DPH) complemented FTIR results and showed a major transition at 8 °C and smaller transitions at 26 and 35 °C. In order to investigate the relative roles of known participants in fluid phase endocytosis, the effects of several chemical inhibitors were investigated. LY uptake was unaffected by colchicine, methylamine, and amiloride. However, disruption of specific microdomains in the membrane (rafts) by methyl-β-cyclodextrin reduced uptake of LY by 35%. Treatment with cytochalasin B, which inhibits actin polymerization, reduced the uptake by 25%. We conclude that the inflection point in the LY uptake versus temperature plot at around 22 °C is correlated with changes in membrane physical state, and that optimal LY internalization requires an intact cytoskeleton and intact membrane rafts.  相似文献   

2.
In isolated rat hepatocytes fluid phase endocytosis, determined by the uptake of the fluorescent dye lucifer yellow (LY), and receptor mediated endocytosis, determined using a ligand for the asialoglycoprotein receptor (asialo-orosomucoid; ASOR), are different pathways based on their different sensitivities to hyperosmolarity induced by sucrose (Oka and Weigel, J. Cell. Biol. 105, 311a, 1987). LY uptake was unaffected by 0.2 M sucrose at all temperatures tested between 12 degrees and 37 degrees C whereas the uptake of 125I-ASOR was completely inhibited at any temperature. Since the two probes are taken up by different pathways it was possible to determine independently the activation energies (Ea) for the fluid phase versus the receptor mediated coated pit endocytic process. The Ea was 26.4 +/- 3.5 and 25.8 +/- 1.9 kcal/mole for, respectively, receptor mediated and fluid phase endocytosis. These values are not significantly different, and we conclude that the fluid phase and receptor mediated pathways are thermodynamically equivalent even though they are independent.  相似文献   

3.
We have investigated the effects of hyperosmolarity induced by sucrose on the fluid phase endocytosis of the fluorescent dye lucifer yellow CH (LY) and the endocytosis of 125I-asialo-orosomucoid (ASOR) by the galactosyl receptor system in isolated rat hepatocytes. Continuous uptake of LY by cells at 37 degrees C is biphasic, occurs for 3-4 h, and then plateaus. Permeabilized cells or crude membranes do not bind LY at 4 or 37 degrees C. Intact cells also do not accumulate LY at 4 degrees C. The rate and extent of LY accumulation are concentration- and energy-dependent, and internalized LY is released from permeabilized cells. Efflux of internalized LY from washed cells is also biphasic and occurs with halftimes of approximately 38 and 82 min. LY is taken up into vesicles throughout the cytoplasm and the perinuclear region with a distribution pattern typical of the endocytic pathway. LY, therefore, behaves as a fluid phase marker in hepatocytes. LY has no effect on the uptake of 125I-ASOR at 37 degrees C. The rate of LY uptake by cells in suspension is not affected for at least 30 min by up to 0.2 M sucrose. The rate of endocytosis of 125I-ASOR, however, is progressively inhibited by increasing the osmolality of the medium with sucrose (greater than 98% with 0.2 M sucrose; Oka and Weigel (1988) J. Cell. Biochem. 36, 169-183). Hyperosmolarity completely inhibits endocytosis of 125I-ASOR by the galactosyl receptor, whereas fluid phase endocytosis of LY is unaffected. Cultured hepatocytes contained about 100 coated pits/mm of apical membrane length as assessed by transmission electron microscopy. In the presence of 0.4 M sucrose, only 17 coated pits/mm of membrane were observed, an 83% decrease. Only a few percent of the total cellular fluid phase uptake in hepatocytes is due to the coated pit endocytic pathway. We conclude that the fluid phase and receptor-mediated endocytic processes must operate via two separate pathways.  相似文献   

4.
Lucifer yellow (LY), an impermeable fluorescent dye used as a marker for fluid phase endocytosis, was internalized by Candida albicans. As observed by fluorescence microscopy, incubation of C. albicans with LY in potassium phosphate buffer (pH 6.0) and glucose (2%, w/v) resulted in localization of the dye inside vacuoles. Sodium azide and carbonyl cyanide m-chlorophenylhydrazone, which are inhibitors of energy metabolism, decreased the uptake of the dye. The optimum temperature for uptake was 30 degrees C; no internalization was observed at 0 degrees C. Quantification of cell-associated LY by fluorescence spectrometry showed an uptake linear with time and not saturable over a 400-fold range of concentration. Thus, C. albicans internalized LY into vacuoles by a nonsaturable and time-, temperature- and energy-dependent process consistent with fluid phase endocytosis. Both the yeast and mould phase of this dimorphic fungus endocytosed LY. Growth in complex medium appeared to be required to enable the cells to internalize LY. However, addition of peptone or yeast extract to the phosphate buffer/glucose assay medium interfered with LY uptake by causing an apparent increase of exocytosis. These studies provide the first evidence of fluid phase endocytosis in C. albicans and may explain how some large molecules, such as toxins and cationic proteins, enter C. albicans.  相似文献   

5.
Membrane and protein properties of freeze-dried mouse platelets   总被引:5,自引:0,他引:5  
Membrane properties and the overall protein secondary structure of freeze-dried trehalose-loaded mouse platelets were studied using steady state fluorescence anisotropy and Fourier transform infrared spectroscopy (FTIR). FTIR results showed that fresh control mouse platelets have a main phase transition at approximately 14 degrees C, whereas, freeze-dried platelets exhibited a main phase transition approximately 12 degrees C. However, the cooperativity of the transition of the rehydrated platelets was greatly enhanced compared to that of control platelets. Anisotropy experiments performed with 1,6 diphenyl-1,3,5 hexatriene (DPH) complemented FTIR results and showed that the lipid order in the core of the membrane was affected by freeze-drying procedures. Similar experiments with trimethyl ammonium 1,6 diphenyl-1,3,5 hexatriene (TMA-DPH), a membrane surface probe, indicated that membrane properties at the membrane/water interface were less affected by freeze-drying procedures than the core of the membrane. Lyophilization did not result in massive protein denaturation, but the overall protein secondary structure was altered, based on in situ assessment of the amide-I and amide-II band profiles. Lyophilization-induced changes to endogenous platelet proteins were further investigated by studying the protein's heat stability. In fresh control platelets, proteins denatured at 42 degrees C, whereas proteins in the rehydrated platelets denatured at 48 degrees C.  相似文献   

6.
We have investigated raft formation in human platelets in response to cell activation. Lipid phase separation and domain formation were detected using the fluorescent dye 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate (diI-C(18)) that preferentially partitions into gel-like lipid domains. We showed that when human platelets are activated by cold and physiological agonists, rafts coalesce into visible aggregates. These events were disrupted by depletion of membrane cholesterol. Using Fourier transform infrared spectroscopy (FTIR), we measured a thermal phase transition at around 30 degrees C in intact platelets, which we have assigned as the liquid-ordered to the liquid-disordered phase transition of rafts. Phase separation of the phospholipid and the sphingomyelin-enriched rafts could be observed as two phase transitions at around 15 and 30 degrees C, respectively. The higher transition, assigned to the rafts, was greatly enhanced with removal of membrane cholesterol. Detergent-resistant membranes (DRMs) were enriched in cholesterol (50%) and sphingomyelin (20%). The multi-functional platelet receptor CD36 selectively partitioned into DRMs, whereas the GPI-linked protein CD55 and the major platelet integrin alpha(IIb)beta(3a) did not, which suggests that the clustering of proteins within rafts is a regulated process dependent on specific lipid protein interactions. We suggest that raft aggregation is a dynamic, reversible physiological event triggered by cell activation.  相似文献   

7.
The endocytosis of diferric transferrin and accumulation of its iron by freshly isolated rabbit reticulocytes was studied using 59Fe-125I-transferrin. Internalized transferrin was distinguished from surface-bound transferrin by its resistance to release during treatment with Pronase at 4 degrees C. Endocytosis of diferric transferrin occurs at the same rate as exocytosis of apotransferrin, the rate constants being 0.08 min-1 at 22 degrees C, 0.19 min-1 at 30 degrees C, and 0.45 min-1 at 37 degrees C. At 37 degrees C, the maximum rate of transferrin endocytosis by reticulocytes is approximately 500 molecules/cell/s. The recycling time for transferrin bound to its receptor is about 3 min at this temperature. Neither transferrin nor its receptor is degraded during the intracellular passage. When a steady state has been reached between endocytosis and exocytosis of the ligand, about 90% of the total cell-bound transferrin is internal. Endocytosis of transferrin was found to be negligible below 10 degrees C. From 10 to 39 degrees C, the effect of temperature on the rate of endocytosis is biphasic, the rate increasing sharply above 26 degrees C. Over the temperature range 12-26 degrees C, the apparent activation energy for transferrin endocytosis is 33.0 +/- 2.7 kcal/mol, whereas from 26-39 degrees C the activation energy is considerably lower, at 12.3 +/- 1.6 kcal/mol. Reticulocytes accumulate iron atoms from diferric transferrin at twice the rate at which transferrin molecules are internalized, implying that iron enters the cell while still bound to transferrin. The activation energies for iron accumulation from transferrin are similar to those of endocytosis of transferrin. This study provides further evidence that transferrin-iron enters the cell by receptor-mediated endocytosis and that iron release occurs within the cell.  相似文献   

8.
Membrane properties and the overall protein secondary structure of freeze-dried trehalose-loaded mouse platelets were studied using steady state fluorescence anisotropy and Fourier transform infrared spectroscopy (FTIR). FTIR results showed that fresh control mouse platelets have a main phase transition at ~14°C, whereas, freeze-dried platelets exhibited a main phase transition ~12°C. However, the cooperativity of the transition of the rehydrated platelets was greatly enhanced compared to that of control platelets. Anisotropy experiments performed with 1,6 diphenyl-1,3,5 hexatriene (DPH) complemented FTIR results and showed that the lipid order in the core of the membrane was affected by freeze-drying procedures. Similar experiments with trimethyl ammonium 1,6 diphenyl-1,3,5 hexatriene (TMA-DPH), a membrane surface probe, indicated that membrane properties at the membrane/water interface were less affected by freeze-drying procedures than the core of the membrane. Lyophilization did not result in massive protein denaturation, but the overall protein secondary structure was altered, based on in situ assessment of the amide-I and amide-II band profiles. Lyophilization-induced changes to endogenous platelet proteins were further investigated by studying the protein's heat stability. In fresh control platelets, proteins denatured at 42°C, whereas proteins in the rehydrated platelets denatured at 48°C.  相似文献   

9.
The mixing behavior of exchangeable, disulfide-based mimics of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol has been examined as a function of temperature in host membranes made from DPPC and cholesterol in the liquid-disordered phase (ld), in the liquid-ordered phase (lo), and in the liquid-disordered/liquid-ordered coexistence region (ld/lo). In the ld region, lipid mixing was found to be temperature insensitive, reflecting close to ideal behavior. In contrast, a significant temperature dependence was observed in the lo phase from 45 to 60 degrees C, when 35 or 40 mol % sterol was present. In this region, sterol-phospholipid association was characterized by DeltaHo = -2.06 +/- 0.14 kcal/mol of phospholipid and DeltaS degrees = -4.48 +/- 0.44 cal/K mol of phospholipid. From 60 to 65 degrees C, the mixing of these lipids was found to be insensitive to temperature, and sterol-phospholipid association was now entropy driven; that is, DeltaHo = -0.23 +/- 0.38 kcal/mol of phospholipid and DeltaS degrees = +1.68 +/- 1.12 cal/K mol of phospholipid. In the liquid-disordered/liquid-ordered coexistence region, changes in lipid mixing reflect changes in the phase composition of the membrane.  相似文献   

10.
D H Pierce  A Scarpa  M R Topp  J K Blasie 《Biochemistry》1983,22(23):5254-5261
The kinetics of ATP-induced Ca2+ uptake by vesicular dispersions of sarcoplasmic reticulum were determined with a time resolution of about 10 ms, depending on the temperature. Ca2+ uptake was initiated by the addition of ATP through the flash photolysis of P3-1-(2-nitrophenyl)-ethyl adenosine 5'-triphosphate utilizing a frequency-doubled ruby laser and measured with two different detector systems that followed the absorbance changes of the metallochromic indicator arsenazo III sensitive to changes in the extravesicular [Ca2+]. The temperature range investigated was -2 to 26 degrees C. The Ca2+ ionophore A23187 was used to distinguish those features of the Ca2+ uptake kinetics associated with the formation of a transmembrane Ca2+ gradient. The acid-stable phosphorylated enzyme intermediate, E approximately P, was determined independently with a quenched-flow technique. Ca2+ uptake is characterized by at least two phases, a fast initial phase and a slow phase. The fast phase exhibits pseudo-first-order kinetics with a specific rate constant of 64 +/- 10 s-1 at 23-26 degrees C, an activation energy of 16 +/- 1 kcal mol-1, and a delta S* of approximately 5 cal deg-1 mol-1, is insensitive to the presence of a Ca2+ ionophore, and occurs simultaneously with the formation of the phosphorylated enzyme, E approximately P, with a stoichiometry of approximately 2 mol of Ca2+/mol of phosphorylated enzyme intermediate. The slow phase also exhibits pseudo-first-order kinetics with a specific rate constant of 0.60 +/- 0.09 s-1 at 25-26 degrees C, an activation energy of 22 +/- 1 kcal mol-1, and a delta S* of approximately 16 cal deg-1 mol-1, is inhibited by the presence of a Ca2+ ionophore, and has a stoichiometry of approximately 2 mol of Ca2+/mol of ATP hydrolyzed.  相似文献   

11.
Temperature dependence of D-glucose transport in reconstituted liposomes   总被引:1,自引:0,他引:1  
Sodium-dependent D-glucose uptake into proteoliposomes reconstituted from dimyristoylphosphatidylcholine (DMPC) and hog kidney brush border membrane extract is strongly affected by temperature and the physical state of the membranes. This dependence is defined by a nonlinear Arrhenius plot with a break point at 23 degrees C, a temperature not significantly different from the phase transition temperature of the pure lipid (24 degrees C). The transport process is characterized by different activation energies: 35.1 kcal/mol below and 5.5 kcal/mol above the transition temperature. The shift in the break point for the D-glucose transport activity from 15 degrees C, in the brush border membranes, to 23 degrees C in the reconstituted system leads us to conclude that the lipids surrounding the sodium/D-glucose cotransport system can exchange readily with the bulk lipid used for reconstitution. The results thus provide no evidence for the presence of an annulus of specific lipids surrounding the transport system.  相似文献   

12.
The rate of endocytosis of cell surface-bound [3H]-asialo-orosomucoid was determined as a function of temperature. Freshly isolated rat hepatocytes were allowed to bind [3H]asialo-orosomucoid at 4 degrees C, washed to remove nonbound ligand, and internalization was then assessed by the resistance of cell-associated radioactivity to release by the Ca2+ chelator EDTA. At 10 degrees C or below, endocytosis is negligible. Above 10 degrees C, the rate of endocytosis is proportional to temperature but the increase of the rate of endocytosis with increasing temperature changes sharply at about 20 degrees C. From 10-20 degrees C, the apparent activation energy for endocytosis, calculated from an Arrhenius plot, is 45.9 kcal/mol and the temperature coefficient, Q10, is 15.6. However, between 20 and 41 degrees C, the calculated activation energy is 17.0 kcal/mol and the Q10 is 2.6. Although the rate of endocytosis of previously bound [3H]asialo-orosomucoid is very dependent on the temperature, the final extent of endocytosis is essentially temperature-independent between 14 and 37 degrees C. The results suggest that there are at least two steps in the overall process of endocytosis mediated by the asialoglycoprotein receptor on isolated hepatocytes which can be potentially rate-limiting, one at 10 degrees C and another at approximately 20 degrees C.  相似文献   

13.
1. When Triton-filled lysosomes from rat liver are incubated for up to 50min at 37 degrees C, pH7.4, in 0.25m-sucrose, no loss of latency of N-acetyl-beta-glucosaminidase or p-nitrophenyl phosphatase occurs unless the incubated lysosomes are cooled to approx. 15 degrees C. 2. It is suggested that a phase change takes place in the incubated lysosomal membranes on cooling; it starts at approx. 15 degrees C and probably is not complete at 0 degrees C. 3. Incubation of the lysosomes causes an increased potential for loss of latency of the lysosomal enzymes. This potential is not fully expressed at elevated temperature (e.g. 37 degrees C), but is expressed on cooling. 4. The increase at elevated temperature in potential for loss of latency exhibits biphasic kinetics, with an initial rapid phase followed by a slower phase, which is linear with respect to time. The extra loss of latency resulting from the rapid phase in proportional to the temperature of the incubation. 5. Arrhenius plots of the increase is potential for loss of latency during the slow phase for N-acetyl-beta-glucosaminidase and p-nitrophenyl phosphatase exhibit marked deviations from linearity beginning at approx. 15 degrees C. This suggests that the increase in potential for loss of latency is affected by a phase change that occurs around this temperature. 6. Activation energies for the increase in potential for loss of latency at and above 22 degrees C are 53.1+/-5.4kJ/mol (12.7+/-1.3kcal/mol) for N-acetyl-beta-glucosaminidase and 45.2+/-7.5kJ/mol (10.8+/-1.8kcal/mol) for p-nitrophenyl phosphatase. It is postulated that these energies reflect enzymic action, the products of which cause loss of latency to occur on cooling.  相似文献   

14.
M Masserini  E Freire 《Biochemistry》1987,26(1):237-242
The transfer of ganglioside GM1 from micelles to membranes and between different membrane populations has been examined by using a pyrene fatty acid derivative of the ganglioside. The transfer of gangliosides from micelles to membranes depends on the physical state as well as the molecular composition of the acceptor vesicles. At 30 degrees C, the transfer of micellar gangliosides to dipalmitoylphosphatidylcholine (DPPC) large unilameller vesicles (Tm = 41.3 degrees C) is characterized by a rate constant of 0.01 min-1; at 48 degrees C, however, the rate constant is 0.11 min-1. Below the phase transition temperature, the activation energy is 25 kcal/mol whereas above the phase transition it is 17 kcal/mol. Similar experiments performed with synaptic plasma membranes yielded a rate constant of 0.05 min-1 at 37 degrees C. The rate of transfer of ganglioside molecules, asymmetrically located on the outer layer of donor vesicles, to acceptor vesicles lacking ganglioside depends on the physical state of both the donor and acceptor vesicles. For the transfer of ganglioside from DPPC (donor) vesicles to dimyristoylphosphatidylcholine (DMPC) (acceptor) vesicles, the rates were essentially zero at 15 degrees C in which both vesicle populations were in the gel phase, 0.008 min-1 at 30 degrees C in which DPPC is in the gel phase and DMPC is in the fluid phase, and 0.031 min-1 at 48 degrees C in which both vesicle populations are in the fluid phase. The transfer of ganglioside from DPPC vesicles to synaptic plasma membranes was also dependent on the physical state of the donor vesicles and showed an inflection point at the phase transition temperature of DPPC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Lysosomal (propylamine-sensitive) protein degradation as well as the energy-dependent (chymostatin-sensitive) part of the non-lysosomal protein degradation was found to be strongly affected by temperature in isolated rat hepatocytes, the activation energy (Ea) being about 25 kcal/mol for both processes. In contrast, the energy-independent (chymostatin-resistant) part of the non-lysosomal degradation had an Ea of approx. 10 kcal/mol only. Sequestration of electroinjected [14C]sucrose into sedimentable organelles showed a pronounced temperature dependence. By means of digitonin extraction it was possible to distinguish between a moderately temperature-sensitive mitochondrial sugar uptake (Ea approx. 12 kcal/mol) and a strongly temperature-dependent autophagic sequestration (Ea approx. 22 kcal/mol). There was no significant autophagic sequestration below 20 degrees C. The sequestration process is more temperature-sensitive than, for example, the early steps of endocytosis, and is likely to represent the major controlling step in the overall autophagic-lysosomal pathway.  相似文献   

16.
The activation energy of thermohemolysis of erythrocytes changes from 36 +/- 5 kcal/mol (35-45 degrees C) to 97 +/- 5 kcal/mol (45-55 degrees C) at the temperature about 45 degrees C in isotonic buffer. The break on Arhenius' plot is preserved also when erythrocytes are placed into plasma. The character of Arhenius' plot is the same when erythrocyte hemoglobin is totally oxidated into methemoglobin by chemical way, though thermal stability of such erythrocytes is decreased. The scheme is presented in which thermohemolysis of erythrocytes occurs by two independent ways: thermodenaturation of hemoglobin (limiting stage of the process when t greater than 45 degrees C) and modification of membrane proteins by hemin, the last being a product of hemoglobin oxidation (limiting stage of the process when t less than 45 degrees C).  相似文献   

17.
The small intestinal brush border is composed of lipid raft microdomains, but little is known about their role in the mechanism whereby cholera toxin gains entry into the enterocyte. The present work characterized the binding of cholera toxin B subunit (CTB) to the brush border and its internalization. CTB binding and endocytosis were performed in organ-cultured pig mucosal explants and studied by fluorescence microscopy, immunogold electron microscopy, and biochemical fractionation. By fluorescence microscopy CTB, bound to the microvillar membrane at 4 degrees C, was rapidly internalized after the temperature was raised to 37 degrees C. By immunogold electron microscopy CTB was seen within 5 min at 37 degrees C to induce the formation of numerous clathrin-coated pits and vesicles between adjacent microvilli and to appear in an endosomal subapical compartment. A marked shortening of the microvilli accompanied the toxin internalization whereas no formation of caveolae was observed. CTB was strongly associated with the buoyant, detergent-insoluble fraction of microvillar membranes. Neither CTB's raft association nor uptake via clathrin-coated pits was affected by methyl-beta-cyclodextrin, indicating that membrane cholesterol is not required for toxin binding and entry. The ganglioside GM(1) is known as the receptor for CTB, but surprisingly the toxin also bound to sucrase-isomaltase and coclustered with this glycosidase in apical membrane pits. CTB binds to lipid rafts of the brush border and is internalized by a cholesterol-independent but clathrin-dependent endocytosis. In addition to GM(1), sucrase-isomaltase may act as a receptor for CTB.  相似文献   

18.
Human platelets loaded with trehalose survive freeze-drying.   总被引:49,自引:0,他引:49  
Human blood platelets are stored in blood banks for 5 days, after which they are discarded, by federal regulation. This short lifetime has led to a chronic shortage of platelets, a problem that is particularly acute in immunosuppressed patients, such as those with AIDS. We report here that platelets can be preserved by freeze-drying them with trehalose, a sugar found at high concentrations in organisms that naturally survive drying. We suggest that these findings will obviate the storage problem with platelets. Trehalose is rapidly taken up by human platelets at 37 degrees C, with loading efficiencies of 50% or greater. Fluid-phase endocytosis plays an important role in this efficient uptake of trehalose, but other mechanisms may also be involved. Trehalose-loaded platelets were successfully freeze-dried, with excellent recovery of intact platelets. Rehydration from the vapor phase led to a survival rate of 85%. The response of these platelets to the agonists thrombin (1 U/ml), collagen (2 microg/ml), ADP (20 micromM), and ristocetin (1.6 mg/ml) was almost identical to that of fresh, control platelets. Analysis by Fourier transform infrared spectroscopy demonstrated that the membrane and protein components of trehalose-loaded platelets after freeze-drying, prehydration, and rehydration were remarkably similar to those of fresh platelets.  相似文献   

19.
The stability of the N-terminal domain of the ribosomal protein L9, NTL9, from Bacillus stearothermophilus has been monitored by circular dichroism at various temperatures and chemical denaturant concentrations in H2O and D2O. The basic thermodynamic parameters for the unfolding reaction, deltaH(o), deltaS(o), and deltaC(o)p, were determined by global analysis of temperature and denaturant effects on stability. The data were well fit by a model that assumes stability varies linearly with denaturant concentration and that uses the Gibbs-Helmholtz equation to model changes in stability with temperature. The results obtained from the global analysis are consistent with information obtained from individual thermal and chemical denaturations. NTL9 has a maximum stability of 3.78 +/- 0.25 kcal mol(-1) at 14 degrees C. DeltaH(o)(25 degrees C) for protein unfolding equals 9.9 +/- 0.7 kcal mol(-1) and TdeltaS(o)++(25 degrees C) equals 6.2 +/- 0.6 kcal mol(-1). DeltaC(o)p equals 0.53 +/- 0.06 kcal mol(-1) deg(-1). There is a small increase in stability when D2O is substituted for H2O. Based on the results from global analysis, NTL9 is 1.06 +/- 0.60 kcal mol(-1) more stable in D2O at 25 degrees C and Tm is increased by 5.8 +/- 3.6 degrees C in D2O. Based on the results from individual denaturation experiments, NTL9 is 0.68 +/- 0.68 kcal mol(-1) more stable in D2O at 25 degrees C and Tm is increased by 3.5 +/- 2.1 degrees C in D2O. Within experimental error there are no changes in deltaH(o) (25 degrees C) when D2O is substituted for H2O.  相似文献   

20.
Crane JM  Tamm LK 《Biophysical journal》2004,86(5):2965-2979
Sterols play a crucial regulatory and structural role in the lateral organization of eukaryotic cell membranes. Cholesterol has been connected to the possible formation of ordered lipid domains (rafts) in mammalian cell membranes. Lipid rafts are composed of lipids in the liquid-ordered (l(o)) phase and are surrounded with lipids in the liquid-disordered (l(d)) phase. Cholesterol and sphingomyelin are thought to be the principal components of lipid rafts in cell and model membranes. We have used fluorescence microscopy and fluorescence recovery after photobleaching in planar supported lipid bilayers composed of porcine brain phosphatidylcholine (bPC), porcine brain sphingomyelin (bSM), and cholesterol to map the composition-dependence of l(d)/l(o) phase coexistence. Cholesterol decreases the fluidity of bPC bilayers, but disrupts the highly ordered gel phase of bSM, leading to a more fluid membrane. When mixed with bPC/bSM (1:1) or bPC/bSM (2:1), cholesterol induces the formation of l(o) phase domains. The fraction of the membrane in the l(o) phase was found to be directly proportional to the cholesterol concentration in both phospholipid mixtures, which implies that a significant fraction of bPC cosegregates into l(o) phase domains. Images reveal a percolation threshold, i.e., the point where rafts become connected and fluid domains disconnected, when 45-50% of the total membrane is converted to the l(o) phase. This happens between 20 and 25 mol % cholesterol in 1:1 bPC/bSM bilayers and between 25 and 30 mol % cholesterol in 2:1 bPC/bSM bilayers at room temperature, and at approximately 35 mol % cholesterol in 1:1 bPC/bSM bilayers at 37 degrees C. Area fractions of l(o) phase lipids obtained in multilamellar liposomes by a fluorescence resonance energy transfer method confirm and support the results obtained in planar lipid bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号