首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Replication fork dynamics and the DNA damage response   总被引:1,自引:0,他引:1  
Prevention and repair of DNA damage is essential for maintenance of genomic stability and cell survival. DNA replication during S-phase can be a source of DNA damage if endogenous or exogenous stresses impair the progression of replication forks. It has become increasingly clear that DNA-damage-response pathways do not only respond to the presence of damaged DNA, but also modulate DNA replication dynamics to prevent DNA damage formation during S-phase. Such observations may help explain the developmental defects or cancer predisposition caused by mutations in DNA-damage-response genes. The present review focuses on molecular mechanisms by which DNA-damage-response pathways control and promote replication dynamics in vertebrate cells. In particular, DNA damage pathways contribute to proper replication by regulating replication initiation, stabilizing transiently stalled forks, promoting replication restart and facilitating fork movement on difficult-to-replicate templates. If replication fork progression fails to be rescued, this may lead to DNA damage and genomic instability via nuclease processing of aberrant fork structures or incomplete sister chromatid separation during mitosis.  相似文献   

3.
4.
DNA from synchronously replicating nuclei of Physarum polycephalum was studied electron microscopically after 15, 30, 60, and 90 or 120 min of replication in the presence or absence of the protein synthesis inhibitor cycloheximide. The replication-loop size-distribution showed that replication fork progression is severely retarded in the presence of cycloheximide. Analysis of replication-loop frequency showed a similar pattern in control and cyclo-heximide-treated samples, with an increase from 15 to 30 and 60 min. This suggests, surprisingly, that initiations of new replicons either may not be inhibited by cycloheximide or, alternatively, that all initiations have already taken place at the very start of S-phase. The latter conclusion is favored in the light of previous results in our laboratory, discussed here.  相似文献   

5.
The Origin Recognition Complex (ORC) is a critical component of replication initiation. We have previously reported generation of an Orc2 hypomorph cell line (Delta/-) that expresses very low levels of Orc2 but is viable. We have shown here that Chk2 is phosphorylated, suggesting that DNA damage checkpoint pathways are activated. p53 was inactivated during the derivation of the Orc2 hypomorphic cell lines, accounting for their survival despite active Chk2. These cells also show a defect in the G1 to S-phase transition. Cdk2 kinase activation in G1 is decreased due to decreased Cyclin E levels, preventing progression into S-phase. Molecular combing of bromodeoxyuridine-labeled DNA revealed that once the Orc2 hypomorphic cells enter S-phase, fork density and fork progression are approximately comparable with wild type cells. Therefore, the low level of Orc2 hinders normal cell cycle progression by delaying the activation of G1 cyclin-dependent kinases. The results suggest that hypomorphic mutations in initiation factor genes may be particularly deleterious in cancers with mutant p53 or increased activity of Cyclin E/Cdk2.  相似文献   

6.
DNA fork displacement rates were measured in Chinese hamster ovary cells (CHO), human HeLa cells and human diploid fibroblasts. For CHO cells two independent techniques were used: one based on CsCl equilibrium density gradients and the other on 313 nm photolysis of incorporated bromodeoxyuridine (BrdUrd). Both methods indicated that there was no significant variation in fork displacement rates in CHO cells as they progressed through S phase. Asynchronous CHO cultures displayed the same average value (1.0 micron/min) and range of values as found in synchronous cells. In contrast, the rate of DNA fork displacement in HeLa cells, measured by the BrdUrd-313 nm method, increased continuously from 0.8 micron/min in early S to 2.5 micron/min in late S. For human diploid fibroblasts, in early S, the rate was approximately 0.7 micron/min and decreased to a minimum of 0.5 micron/min in mid S. The replication fork displacement rate then increased to a maximum of 0.9 micron/min in late S and declined again before the end of S phase. This pattern of DNA fork displacement rates roughly paralleled the overall thymidine incorporation rate and appears quite different from the patterns found for HeLa and CHO cells.  相似文献   

7.
During S-phase, the genome is extremely vulnerable and the progression of replication forks is often threatened by exogenous and endogenous challenges. When replication fork progression is halted, the intra S-phase checkpoint is activated to promote structural stability of stalled forks, preventing the dissociation of replisome components. This ensures the rapid resumption of replication following DNA repair. Failure in protecting and/or restarting the stalled forks contributes to alterations of the genome. Several human genetic diseases coupled to an increased cancer predisposition are caused by mutations in genes involved in safeguarding genome integrity during DNA replication. Both the ATR (ataxia telangiectasia and Rad3-related protein) kinase and the Replication pausing complex (RPC) components Tipin, Tim1 and Claspin play key roles in activating the intra S-phase checkpoint and in stabilizing the stalled replication forks. Here, we discuss the specific contribution of these factors in preserving fork structure and ensuring accurate completion of DNA replication.  相似文献   

8.
Mechanisms of replication fork protection: a safeguard for genome stability   总被引:1,自引:0,他引:1  
During S-phase, the genome is extremely vulnerable and the progression of replication forks is often threatened by exogenous and endogenous challenges. When replication fork progression is halted, the intra S-phase checkpoint is activated to promote structural stability of stalled forks, preventing the dissociation of replisome components. This ensures the rapid resumption of replication following DNA repair. Failure in protecting and/or restarting the stalled forks contributes to alterations of the genome. Several human genetic diseases coupled to an increased cancer predisposition are caused by mutations in genes involved in safeguarding genome integrity during DNA replication. Both the ATR (ataxia telangiectasia and Rad3-related protein) kinase and the Replication pausing complex (RPC) components Tipin, Tim1 and Claspin play key roles in activating the intra S-phase checkpoint and in stabilizing the stalled replication forks. Here, we discuss the specific contribution of these factors in preserving fork structure and ensuring accurate completion of DNA replication.  相似文献   

9.
Shechter D  Costanzo V  Gautier J 《DNA Repair》2004,3(8-9):901-908
The nuclear protein kinase ATR controls S-phase progression in response to DNA damage and replication fork stalling, including damage caused by ultraviolet irradiation, hyperoxia, and replication inhibitors like aphidicolin and hydroxyurea. ATR activation and substrate specificity require the presence of adapter and mediator molecules, ultimately resulting in the downstream inhibition of the S-phase kinases that function to initiate DNA replication at origins of replication. The data reviewed strongly support the hypothesis that ATR is activated in response to persistent RPA-bound single-stranded DNA, a common intermediate of unstressed and damaged DNA replication and metabolism.  相似文献   

10.
Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics.  相似文献   

11.
Vázquez MV  Rojas V  Tercero JA 《DNA Repair》2008,7(10):1693-1704
Eukaryotic genomes are especially vulnerable to DNA damage during the S phase of the cell cycle, when chromosomes must be duplicated. The stability of DNA replication forks is critical to achieve faithful chromosome replication and is severely compromised when forks encounter DNA lesions. To maintain genome integrity, replication forks need to be protected by the S-phase checkpoint and DNA insults must be repaired. Different pathways help to repair or tolerate the lesions in the DNA, but their contribution to the progression of replication forks through damaged DNA is not well known. Here we show in budding yeast that, when the DNA template is damaged with the alkylating agent methyl methanesulfonate (MMS), base excision repair, homologous recombination and DNA damage tolerance pathways, together with a functional S-phase checkpoint, are essential for the efficient progression of DNA replication forks and the maintenance of cell survival. In the absence of base excision repair, replication forks stall reversibly in cells exposed to MMS. This repair reaction is necessary to eliminate the lesions that impede fork progression and has to be coordinated with recombination and damage tolerance activities to avoid fork collapse and allow forks to resume and complete chromosome replication.  相似文献   

12.
Werner's syndrome (WS) is a rare autosomal recessive disorder that arises as a consequence of mutations in a gene coding for a protein that is a member of RecQ family of DNA helicases, WRN. The cellular function of WRN is still unclear, but on the basis of the cellular phenotypes of WS and of RecQ yeast mutants, its possible role in controlling recombination and/or in maintenance of genomic integrity during S-phase has been envisaged. With the use of two drugs, camptothecin and hydroxyurea, which produce replication-associated DNA damage and/or inhibit replication fork progression, we find that WS cells have a slower rate of repair associated with DNA damage induced in the S-phase and a reduced induction of RAD51 foci. As a consequence, WS cells undergo apoptotic cell death more than normal cells, even if they arrest and resume DNA synthesis at an apparently normal rate. Furthermore, we report that WS cells show a higher background level of DNA strand breaks and an elevated spontaneous induction of RAD51 foci. Our findings support the hypothesis that WRN could be involved in the correct resolution of recombinational intermediates that arise from replication arrest due to either DNA damage or replication fork collapse.  相似文献   

13.
Cdc45 is required for initiation of DNA replication and fork progression, but its function in these processes remains unknown. We show that targeting Cdc45 to specific chromosomal sites in mammalian cells results in large-scale chromatin decondensation that strongly correlates with histone H1 phosphorylation. Cdk2 is recruited to sites of Cdc45 decondensation, and Cdk2 inhibitors reduce the level of decondensation. Targeting wild-type Cdk2, but not kinase-defective Cdk2, to chromatin is also effective at inducing decondensation involving phospho-H1. Cdc45, Cdk2, Cyclin A, and phospho-H1 associate with chromatin during S-phase, and Cdc45, Cdk2, and an active H1 kinase physically interact. Replicating DNA and phospho-H1 foci colocalize in vivo, and S-phase progression and H1 phosphorylation are directly related and Cdk2 dependent. Because Cdk2 colocalizes with replication foci and H1 regulates higher-order chromatin, we suggest a model in which Cdc45 recruits Cdk2 to replication foci, resulting in H1 phosphorylation, chromatin decondensation, and facilitation of fork progression.  相似文献   

14.
Liu JS  Kuo SR  Melendy T 《Mutation research》2003,532(1-2):215-226
To better understand the different cellular responses to replication fork pausing versus blockage, early DNA damage response markers were compared after treatment of cultured mammalian cells with agents that either inhibit DNA polymerase activity (hydroxyurea (HU) or aphidicolin) or selectively induce S-phase DNA damage responses (the DNA alkylating agents, methyl methanesulfonate (MMS) and adozelesin). These agents were compared for their relative abilities to induce phosphorylation of Chk1, H2AX, and replication protein A (RPA), and intra-nuclear focalization of gamma-H2AX and RPA. Treatment by aphidicolin and HU resulted in phosphorylation of Chk1, while HU, but not aphidicolin, induced focalization of gamma-H2AX and RPA. Surprisingly, pre-treatment with aphidicolin to stop replication fork progression, did not abrogate HU-induced gamma-H2AX and RPA focalization. This suggests that HU may act on the replication fork machinery directly, such that fork progression is not required to trigger these responses. The DNA-damaging fork-blocking agents, adozelesin and MMS, both induced phosphorylation and focalization of H2AX and RPA. Unlike adozelesin and HU, the pattern of MMS-induced RPA focalization did not match the BUdR incorporation pattern and was not blocked by aphidicolin, suggesting that MMS-induced damage is not replication fork-dependent. In support of this, MMS was the only reagent used that did not induce phosphorylation of Chk1. These results indicate that induction of DNA damage checkpoint responses due to adozelesin is both replication fork and fork progression dependent, induction by HU is replication fork dependent but progression independent, while induction by MMS is independent of both replication forks and fork progression.  相似文献   

15.
Heat shock (HS) is one of the better-studied exogenous stress factors. However, little is known about its effects on DNA integrity and the DNA replication process. In this study, we show that in G1 and G2 cells, HS induces a countable number of double-stranded breaks (DSBs) in the DNA that are marked by γH2AX. In contrast, in S-phase cells, HS does not induce DSBs but instead causes an arrest or deceleration of the progression of the replication forks in a temperature-dependent manner. This response also provoked phosphorylation of H2AX, which appeared at the sites of replication. Moreover, the phosphorylation of H2AX at or close to the replication fork rescued the fork from total collapse. Collectively our data suggest that in an asynchronous cell culture, HS might affect DNA integrity both directly and via arrest of replication fork progression and that the phosphorylation of H2AX has a protective effect on the arrested replication forks in addition to its known DNA damage signaling function.  相似文献   

16.
Exposure of eukaryotic cells to ultraviolet light results in a temporary inhibition of DNA replication as well as a temporary blockage of DNA fork progression. Recently there has been considerable debate as to whether the (5-6)cyclobutane pyrimidine dimer, the pyrimidine(6-4)pyrimidone lesion or both are responsible for these effects. Using cell lines that repair both of these lesions (CHO AA8), only (6-4) lesions (CHO UV61) or neither (CHO UV5), we have shown that in rodent cells both lesions appear to play a role in both the inhibition of thymidine incorporation and the blockage of DNA fork progression. Specifically, after exposure to 2.5 J/m2, AA8 cells recover normal rates of DNA replication within 5 h after exposure, while UV5 cells exhibit a greater depression in thymidine incorporation for at least 10 h. UV61 cells, on the other hand, show an intermediate response, both with respect to the extent of the initial depression and the rate of recovery of thymidine incorporation. UV61 cells also exhibit an intermediate response with respect to blockage of DNA fork progression. In previous publications we have shown that UV5 cells exhibit extensive blockage of DNA fork progression and only limited recovery of this effect within the first 5 h after exposure to UV. In this report we show that UV61 cells exhibit a more extensive blockage of fork progression than is observed in AA8 cells. These blocks also appear to be removed (or overcome) more slowly than in the AA8 cells, but more rapidly than in UV5 cells. Taken together we conclude that both lesions appear to be involved in the initial depression in thymidine incorporation and the initial blockage of DNA fork progression in rodent cells. These data also indicate that (6-4) lesions may be responsible for the prolonged depression in thymidine incorporation and the prolonged blockage of DNA fork progression observed in UV5 cells.  相似文献   

17.
The influence of Staphylococcus alpha-toxin has been investigated on the duration of S-phase of lymphocyte mitotic cycle and on DNA replication in human fibroblasts in vitro. The duration of the S-phase of lymphocytes was measured by counting labeled metaphases and by making replication curves. Alpha-toxin in a dose of 3 micrograms/ml enhances the onset of S-phase, which is inhibited at a dose of 33 micrograms/ml of alpha-toxin. The action of alpha-toxin resulted in a decreased rate of replication fork and in a progressive activation of replicon groups. This effect was most prominent at 33 micrograms/ml of alpha-toxin. The data obtained allow to suggest that immunodeficiency of the second order, so characteristic of the staphylococcal sepsis, may be due, in many respects, to suppression of DNA replication.  相似文献   

18.
Genetic screening of yeast for sld (synthetic lethality with dpb11) mutations has identified replication proteins, including Sld2, -3, and -5, and clarified the molecular mechanisms underlying eukaryotic chromosomal DNA replication. Here, we report a new replication protein, Sld7, identified by rescreening of sld mutations. Throughout the cell cycle, Sld7 forms a complex with Sld3, which associates with replication origins in a complex with Cdc45, binds to Dpb11 when phosphorylated by cyclin-dependent kinase, and dissociates from origins once DNA replication starts. However, Sld7 does not move with the replication fork. Sld7 binds to the nonessential N-terminal portion of Sld3 and reduces its affinity for Cdc45, a component of the replication fork. Although Sld7 is not essential for cell growth, its absence reduces the level of cellular Sld3, delays the dissociation from origins of GINS, a component of the replication fork, and slows S-phase progression. These results suggest that Sld7 is required for the proper function of Sld3 at the initiation of DNA replication.  相似文献   

19.
Intracellular deoxyribonucleoside triphosphate (dNTP) pools must be tightly regulated to preserve genome integrity. Indeed, alterations in dNTP pools are associated with increased mutagenesis, genomic instability and tumourigenesis. However, the mechanisms by which altered or imbalanced dNTP pools affect DNA synthesis remain poorly understood. Here, we show that changes in intracellular dNTP levels affect replication dynamics in budding yeast in different ways. Upregulation of the activity of ribonucleotide reductase (RNR) increases elongation, indicating that dNTP pools are limiting for normal DNA replication. In contrast, inhibition of RNR activity with hydroxyurea (HU) induces a sharp transition to a slow-replication mode within minutes after S-phase entry. Upregulation of RNR activity delays this transition and modulates both fork speed and origin usage under replication stress. Interestingly, we also observed that chromosomal instability (CIN) mutants have increased dNTP pools and show enhanced DNA synthesis in the presence of HU. Since upregulation of RNR promotes fork progression in the presence of DNA lesions, we propose that CIN mutants adapt to chronic replication stress by upregulating dNTP pools.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号