首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The physical state of the JC virus (JCV) genome was studied in two clonal cell lines (clones 2 and 7) derived from a tissue culture cell line (HJC-15) established from a hamster brain tumor induced by JCV. Saturation-hybridization and reassociation kinetic analyses, using in vitro (32)P-labeled JCV DNA, indicated that clone 7 and 2 cells contain 9 to 10 and 4 to 5 copies per cell, respectively, of all or most of the viral genome. Both cell DNAs were analyzed by using the Southern blotting procedure with three restriction endonucleases: XhoI, which does not cleave JCV DNA; EcoRI, which cleaves once; and HindIII, which cleaves three times. With each DNA, a variety of JCV-specific DNA fragments were detected. The following conclusions are possible: (i) JCV DNA is integrated into cell DNA in both clonal lines; (ii) both clonal lines contain multiple copies of the viral genome integrated in a tandem head-to-tail orientation; (iii) neither clonal line contains detectable free-form I, II, or III JCV DNA; (iv) each clonal line contains multiple independent sites of JCV DNA integration; and (v) most or all of the sites of integration on the cellular or the viral genome, or both, are different in clone 7 DNA than in clone 2 DNA. Thus, although both clone 7 and clone 2 cells were established from the HJC-15 tumor cell line, they differ in the copy number and integration pattern of JCV DNA.  相似文献   

2.
3.
Mapping 5'' termini of JC virus early RNAs.   总被引:2,自引:1,他引:1       下载免费PDF全文
Within its enhancer promoter region, the MAD-1 strain of JC virus (JCV) has two 98-base-pair tandem repeats, each containing a TATA box-like sequence. In the present study, polyadenylated early JCV mRNAs were isolated 5 or 29 days after infection of primary human fetal glial (PHFG) cells. By using S1 nuclease, the 5' termini of the early mRNAs were mapped to nucleotide position(s) (np) 122 through 125, which lies within an AT rich region (at np 113 through 127). In contrast, when JCV DNA was transcribed in vitro, we observed a single major cluster of 5' start sites at np 94 through 97, which is approximately 25 base pairs downstream from one of the TATA boxes. By day 5, the earliest time at which JCV RNA was detected, viral DNA replication had begun; it continued for at least an additional 20 days. Since more late than early RNA was present at 5 days postinfection, the early RNAs whose synthesis began at np 122 through 125 may be analogous to SV40 late early mRNA (Ghosh and Lebowitz, J. Virol. 40:224-240, 1981). However, we have not detected RNAs with 5' termini 25 to 30 bp downstream from the TATA box at earlier times. While JCV contains two identical TATA boxes, one in each of the 98-bp repeats, only the upstream TATA box functions as an early promoter element.  相似文献   

4.
Comparison of infectious JC virus DNAs cloned from human brain.   总被引:5,自引:10,他引:5       下载免费PDF全文
We cloned JC virus DNA obtained directly from brain tissue of 10 cases of progressive multifocal leukoencephalopathy and compared DNAs by restriction endonuclease mapping. Before cloning, each DNA preparation was homogeneous with respect to restriction patterns, but with the cloned DNAs we found variability in three regions of the genome among DNAs from different cases. There was a region of hypervariability between 0.67 and 0.725 map units; no two DNAs were exactly alike in this region. We determined that the origin of DNA replication also was in this region at 0.69 +/- 0.02 map units. In 4 of the 10 DNAs examined there was a deletion of approximately 75 base pairs between 0.14 and 0.235 map units, the region presumed to contain the codons for the C-terminal ends of the structural protein Vpl and for T antigen. JC virus DNA from these same four cases had an additional HincII-HpaI site at 0.895 map units in the presumptive Vp3 and Vp2 coding regions. Overall, no two JC virus genomes were identical although all were from fatal central nervous system infections and were infectious in vitro. Our restriction patterns suggest that there are two subtypes of JC virus circulating in the population.  相似文献   

5.
6.
A tumor cell suspension of an explanted JC virus (JCV)-induced owl monkey glioblastoma was inoculated intracranially into four recipient juvenile owl monkeys. Twenty-eight months following inoculation one owl monkey developed a glioblastoma, which was explanted into tissue culture. DNA from both the tumor tissue and tumor cells in culture hybridized to a JCV DNA probe by Southern analysis, indicating that free, as well as integrated, viral DNA may be present. At the time of the second culture passage, viral JCV DNA was extracted from these cells and cloned into a plasmid vector. Nucleotide sequencing of the regulatory region of the cloned DNA demonstrated homology with the prototype Mad-1 strain of JCV and revealed a 19-base-pair deletion in the second 98-base-pair tandem repeat that eliminated a second TATA box. This deletion is characteristic of the Mad-4 strain of JCV, which is highly neurooncogenic. By the third culture passage, 100% of the cells were T-antigen positive. Approximately one-third of the cells in culture hybridized to a biotinylated JCV DNA probe when in situ hybridization was used, a technique that only detects high-copy-number of replicating viral sequences. By the culture passage 5 and continuing through culture passage 14, viable JC virions could be recovered. The T protein synthesized by this virus, now termed JCV-586, differed from both the Mad-1 and Mad-4 strains in that it formed a stable complex with the cellular p53 protein in the tumor cells. Also, the JCV-586 T protein reacted to several monoclonal antibodies made to the simian virus 40 T protein that were not recognized by either the Mad-1 or Mad-4 strains.  相似文献   

7.
8.
Incorporation of viral DNA may interfere with the normal sequence of human DNA bases on the genetic level or cause secondary epigenetic changes such as gene promoter methylation or histone acetylation. Colorectal cancer (CRC) is the second leading cause of cancer mortality in the USA. Chromosomal instability (CIN) was established as the key mechanism in cancer development. Later, it was found that CRC results not only from the progressive accumulation of genetic alterations but also from epigenetic changes. JC virus (JCV) is a candidate etiologic factor in sporadic CRC. It may act by stabilizing β-catenin, facilitating its entrance to the cell nucleus, initialing proliferation and cancer development. Diploid CRC cell lines transfected with JCV-containing plasmids developed CIN. This result provides direct experimental evidence for the ability of JCV T-Ag to induce CIN in the genome of colonic epithelial cells. The association of CRC hMLH1 methylation and tumor positivity for JCV was recently documented. JC virus T-Ag DNA sequences were found in 77% of CRCs and are associated with promoter methylation of multiple genes. hMLH1 was methylated in 25 out of 80 CRC patients positive for T-Ag (31%) in comparison with only one out of 11 T-Ag negative cases (9%). Thus, JCV can mediate both CIN and aberrant methylation in CRC. Like other viruses, chronic infection with JCV may induce CRC by different mechanisms which should be further investigated. Thus, gene promoter methylation induced by JCV may be an important process in CRC and the polyp-carcinoma sequence.  相似文献   

9.
B lymphocytes are known as a potential site for latency and reactivation of the human neurotropic polyomavirus, JC virus (JCV). In light of recent studies on the oncogenicity of JCV and the transforming ability of the JCV early protein, T antigen, we investigated the association of JCV with B-cell lymphomas of the central nervous system. Examination of 27 well-characterized clinical specimens by gene amplification and immunohistochemistry revealed the presence of DNA sequences corresponding to the JCV early genome and the late Agnoprotein in 22 samples and the JCV late genome encoding the viral capsid proteins in 8 samples. Expression of T antigen and that of Agnoprotein by immunohistochemistry were each detected in six specimens. No evidence of the production of viral capsid proteins was observed, ruling out productive infection of JCV in the tumor cells. The results from laser capture microdissection verified the presence of JCV T-antigen sequences in tumor cells with positive immunoreactivity to antibodies against the viral proteins T antigen and Agnoprotein. Due to previous reports demonstrating an association of the Epstein-Barr virus (EBV) with transformation of B lymphocytes, EBV DNA sequences and the EBV transforming protein, latent membrane protein 1 (LMP1), were analyzed in parallel. EBV LMP1 DNA sequences were detected in 16 of 23 samples, and LMP1 expression was detected in 16 samples, 5 of which exhibited positive immunoreactivity to JCV proteins. Double labeling demonstrated coexpression of JCV T antigen and EBV LMP1 in the same cells. The detection of the JCV genome in large numbers of B-cell lymphomas and its coexistence with EBV suggest a potential role for JCV in the pathogenesis of primary CNS lymphoma.  相似文献   

10.
The progression of cancer is often associated with genomic instability, which may develop as a result of compromised defense mechanisms responsible for the maintenance of chromosomal integrity. These include defects in telomere preservation, chromosomal segregation, and DNA repair. In this review, we discuss molecular interactions between viral and cellular signaling components, which interfere with DNA repair mechanisms, and possibly contribute to the development of a mutagenic phenotype. Our studies indicate that large T-antigen from the human polyomavirus JC (JCV T-antigen) inhibits homologous recombination directed DNA repair (HRR)-causing accumulation of mutations in the affected cells (JCP 2005, in press). Surprisingly, T-antigen does not operate directly, but utilizes insulin receptor substrate 1 (IRS-1), which is the major signaling molecule for insulin-like growth factor I receptor (IGF-IR). Following T-antigen-mediated nuclear translocation, IRS-1 binds Rad51 at the site of damaged DNA. This T-antigen-mediated inhibition of HRR does not function in cells lacking IRS-1, and can be reproduced in the absence of T-antigen by IRS-1 with an artificial nuclear localization signal. The interplay described between the IGF-IR signaling system and JCV T-antigen in the process of DNA repair could be relevant, since nearly 90% of the human population is seropositive for JC virus, JCV T-antigen transforms cells in vitro, is tumorigenic in experimental animals, and the presence of JC virus has been shown in an increasing number of biopsies of human cancer.  相似文献   

11.
Human fetal Schwann cells support JC virus multiplication.   总被引:4,自引:1,他引:3       下载免费PDF全文
The human papovavirus JC virus (JCV), the etiologic agent of progressive multifocal leukoencephalopathy, displays a narrow host range for growth, preferentially infecting oligodendrocytes, the myelin-producing cells of the central nervous system. In tissue culture, human fetal brain cells have been used for JCV propagation because of their ability to support JCV virion production. In this study, we evidence that a human fetal cell type derived from the peripheral nervous system can be productively infected with JCV. Schwann cells, the cell type responsible for myelination in the peripheral nervous system, support the expression of JCV T antigen and JCV DNA replication. However, viral proteins and DNA replication were not detected either in dorsal root ganglion neurons or fibroblasts. These results extend the host range of JCV to include another cell of the glial lineage whose function is myelin formation.  相似文献   

12.
The human papovavirus JC virus (JCV) was analyzed for the presence of unusual DNA conformations. Recombinant plasmids containing 60% of the JCV prototype Mad-1 strain DNA were constructed and analyzed with both enzymatic and chemical probes. Fine-mapping studies revealed that the most prominent S1 nuclease-sensitive and bromoacetaldehyde-modified sites were located within the TATA boxes of each 98-base-pair tandem repeat. Further studies revealed that the S1 nuclease-sensitive site in the first TATA box (proximal to the origin) was approximately 50-fold stronger than the site in the second TATA box (distal from the origin). Deletion of the first TATA box drastically reduced the extent of bromoacetaldehyde modification in the second TATA box, whereas deletion of the second TATA box had little or no effect on the reactivity at the first TATA box. Hence, the biological and conformational role of the second TATA box remains unclear. No supercoil-induced relaxation was found, and reactions with the probes were not pH dependent. Also, fragments containing this regulatory region did not appear to be bent, although the A+T-rich segment contained a tract of eight consecutive A's. We conclude that the regulatory region of JCV contains non-B, but right-handed, DNA conformations which account for this behavior.  相似文献   

13.
JC virus (JCV) belongs to the polyomavirus family of double-stranded DNA viruses and causes progressive multifocal leukoencephalopathy in humans. JCV encodes early proteins (large T antigen, small T antigen, and T' antigen) and four late proteins (agnoprotein, and three viral capsid proteins, VP1, VP2, and VP3). In the current study, a novel function for JCV agnoprotein in the morphogenesis of JC virion particles was identified. It was found that mature virions of agnoprotein-negative JCV are irregularly shaped. Sucrose gradient sedimentation and cesium chloride gradient ultracentrifugation analyses revealed that the particles of virus lacking agnoprotein assemble into irregularly sized virions, and that agnoprotein alters the efficiency of formation of VP1 virus-like particles. An in vitro binding assay and immunocytochemistry revealed that agnoprotein binds to glutathione S-transferase fusion proteins of VP1 and that some fractions of agnoprotein colocalize with VP1 in the nucleus. In addition, gel filtration analysis of formation of VP1-pentamers revealed that agnoprotein enhances formation of these pentamers by interacting with VP1. The present findings suggest that JCV agnoprotein plays a role, similar to that of SV40 agnoprotein, in facilitating virion assembly.  相似文献   

14.
The human polyomavirus JC virus (JCV) establishes persistent infections in most individuals and is the etiologic agent of progressive multifocal leukoencephalopathy. In this report, we describe the establishment of a soluble cell-free system that is capable of replicating exogenous plasmid DNA containing the JCV origin of replication. Replication in this system is completely dependent on the addition of JCV large T antigen (TAg). To prepare JCV TAg for replication analysis, a recombinant baculovirus containing the JCV TAg-coding sequence was generated. TAg expressed in insect cells was purified by metal chelate chromatography. JCV TAg supported initiation of JCV DNA replication in the presence of DNA polymerase alpha-primase, replication protein A, and topoisomerase I in a dose-dependent manner and was also capable of supporting DNA replication in crude human cell extracts. Point mutation of TAg-binding site I strongly diminished TAg binding and concomitantly reduced JCV DNA replication in vivo and in vitro by approximately 50%. Point mutation of TAg-binding site II or deletion of the early palindrome completely abolished replication of JCV origin-containing plasmid DNA in vivo and in vitro, marking these sequences as essential components of the JCV core origin. A comparison of several TAgs showed that simian virus 40 TAg, but not mouse polyomavirus (PyV) TAg, supported replication of a plasmid containing a JCV origin. These findings provide evidence that replication in the cell-free system faithfully mimics JCV DNA replication in vivo. Therefore, it may be a useful tool for future analysis of interactions between JCV and its host cell.  相似文献   

15.
JC virus (JCV)-specific CD8+ cytotoxic T lymphocytes (CTL) are associated with a favorable outcome in patients with progressive multifocal leukoencephalopathy (PML) and cross-recognize the polyomavirus BK virus (BKV). We sought to determine the frequency and phenotype in fresh blood of CD8+ T cells specific for two A*0201-restricted JCV epitopes, VP1(p36) and VP1(p100), and assess their impact on JC and BK viremia and viruria in 15 healthy subjects, eight human immunodeficiency virus-positive (HIV+) individuals, and nine HIV+ patients with PML (HIV+ PML patients) classified as survivors. After magnetic pre-enrichment of CD8+ T cells, epitope-specific cells ranged from 0.001% to 0.022% [corrected] by tetramer staining, with no significant difference among the three study groups. By use of seven-color flow cytometry, there was no predominant differentiation phenotype subset among JCV-specific CD8+ T cells in healthy individuals, HIV+ subjects, or HIV+ PML patients. However, in one HIV+ PML patient studied in the acute phase, there was a majority of activated effector memory cells. BKV DNA was undetectable in all blood samples by quantitative PCR, while a low JC viral load was found in the blood of only one HIV+ and two HIV+ PML patients. JCV and BKV DNA were detected in 33.3% and 13.3% of all urine samples, respectively, independent of the presence of JCV-specific CTL. The detection of JCV DNA in the urine was associated with the presence of a JCV VP1(p100) CTL response. Immunotherapies aiming at increasing the cellular immune response against JCV may be valuable in the treatment of HIV+ individuals with PML.  相似文献   

16.
We have initiated a study to identify host proteins which interact with the regulatory region of the human polyomavirus JC (JCV), which is associated with the demyelinating disease, progressive multifocal leukoencephalopathy. We examined the interaction of nuclear proteins prepared from different cell lines with the JCV regulatory region by DNA binding gel retardation assays. Binding was detected with nuclear extracts prepared from human fetal glial cells, glioma cells, and HeLa cells. Little or no binding was detected with nuclear extracts prepared from human embryonic kidney cells. Competitive binding assays suggest that the nuclear factor(s) which interacted with the JCV regulatory region was different from those which interacted with the regulatory region of the closely related polyomavirus SV40. We found three areas in the JCV regulatory region protected from DNase I digestion: site A, located just upstream from the TATA sequence in the first 98-base pair (bp) repeat; site B, located upstream from the TATA sequence in the second 98-bp repeat; and site C, located just following the second 98-bp repeat. There were some differences in the ability of the nuclear factor(s) from the two brain cell lines and HeLa cells to completely protect the nucleotides within the footprint region. The results from the DNase I protective studies and competitive DNA binding studies with specific oligonucleotides, suggest that nuclear factor-1 or a nuclear factor-1-like factor is interacting with all three sites in the JCV regulatory region. In addition, the results suggest that the nuclear factor which interacts with the JCV regulatory region from human brain cell lines is different from the factor found in HeLa cells.  相似文献   

17.
18.
19.
F A White  rd  M Ishaq  G L Stoner    R J Frisque 《Journal of virology》1992,66(10):5726-5734
Sections of normal and diseased brain and kidney tissues were screened for the presence of JC virus (JCV) DNA by using the polymerase chain reaction. As expected, all samples obtained from patients with progressive multifocal leukoencephalopathy (PML) tested positive when multiple JCV-specific primer and probe combinations were used. Unexpectedly, more than 50% of non-PML-affected brains were also found to harbor low levels of JCV DNA. To confirm that the positive signals seen in the tissue sections were not the result of contamination, amplified DNA was cloned and sequenced and in some cases was shown to represent strains of JCV not identified previously. Two predominant regulatory region configurations of JCV have been detected in the human host: archetype JCV, which is excreted in the urine of normal and immunocompromised individuals, and "PML-type" JCV found in diseased brains. This latter group of variants appears to derive from archetype JCV by the deletion and duplication of sequences within the promoter-enhancer region. In the present study, the archetype strain of JCV was identified only in normal kidney samples; JCV DNA found in non-PML-affected brain specimens and in kidney tissue from patients with PML resembled that of strains isolated from PML-affected brain tissue. Our findings indicate that JCV reaches the brain more frequently than previously thought and may persist at this site without causing demyelinating disease. A subsequent episode of prolonged immunodeficiency or a direct interaction with an immunocompromising agent (e.g., human immunodeficiency virus type 1) might activate the latent JCV infection and lead to the development of PML.  相似文献   

20.
Infection of eukaryotic cells by pathogens requires the efficient use of host cell endocytic and cytoplasmic transport mechanisms. Understanding how these cellular functions are exploited by microorganisms allows us to better define the basic biology of pathogenesis while providing better insight into normal cellular functions. In this report we compare and contrast intracellular transport and trafficking of the human polyomavirus JC virus (JCV) with that of simian virus 40 (SV40). We have previously shown that infection of human glial cells by JCV requires clathrin-dependent endocytosis. In contrast, infection of cells by SV40 proceeds by caveola-dependent endocytosis. We now examine the roles of endosomal pH and the cellular cytoskeleton during infection of glial cells by both viruses. Our results demonstrate that JCV infection is sensitive to disruption of endosomal pH, whereas SV40 infection is pH independent. Infection by JCV is inhibited by treatment of glial cells with cytochalasin D, nocodazole, and acrylamide, whereas SV40 infection is affected only by nocodazole. These data point to critical differences between JCV and SV40 in terms of endocytosis and intracellular trafficking of their DNA genomes to the nucleus. These data also suggest a unique sequential involvement of cytoskeletal elements during infection of glial cells by JCV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号