首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure of a complex of rhizopuspepsin, a fungal aspartyl protease, with Pro1-Phe2-His3-Phe4-psi[CH2-NH]-Phe5-Val6, its substrate-like inhibitor, was calculated by theoretical conformational analysis. The search for energetically favorable conformational variants of the ligand structure was based on the fragmental approach using the dynamic library of peptide fragments, which were successively extended in the potential field of the protein. The root-mean-square deviation of atom positions in the calculated and experimental inhibitor conformations was 0.56 A. A similar approach was used to model a noncovalent complex of rhizopuspepsin with Pro1-Phe2-His3-Lys4-Phe5-Val6, its specific substrate. As a result, two isoenergetic structures of the complex with different arrangements of the cleavable peptide group and a nucleophilic water molecule were calculated. The possibility of the achieving each of these conformations during the catalytic act is considered. It is shown that there are no structural prerequisites for the distortion of the cleavable bond in the active site of the enzyme. On the basis of the resulting structural data, the assumption was made that Asp35 may be protonated at a late stage of formation of the tetrahedral intermediate rather than at the basic state of the complex.  相似文献   

2.
Substituted gamma-chromones were found to weakly inhibit HIV-1 proteinase, an important enzyme in the replication and processing of the AIDS virus. Chromones bearing hydroxyl substituents and a phenolic group at the 2-position (flavones) were the most active compounds and structure-activity relationships for a limited series of flavone inhibitors are presented. Dixon plots are reported and a possible mechanism for flavone-induced inhibition is proposed. The results are also compared with those for some structurally related non-peptidic inhibitors of HIV-1 proteinase. Since some flavonoid compounds have already been shown to have antiviral activity against AIDS, the present observations of anti-HIV-1 proteinase activity may be particularly significant.  相似文献   

3.
Sayer JM  Louis JM 《Proteins》2009,75(3):556-568
The importance of the active site region aspartyl residues 25 and 29 of the mature HIV-1 protease (PR) for the binding of five clinical and three experimental protease inhibitors [symmetric cyclic urea inhibitor DMP323, nonhydrolyzable substrate analog (RPB) and the generic aspartic protease inhibitor acetyl-pepstatin (Ac-PEP)] was assessed by differential scanning calorimetry. DeltaT(m) values, defined as the difference in T(m) for a given protein in the presence and absence of inhibitor, for PR with DRV, ATV, SQV, RTV, APV, DMP323, RPB, and Ac-PEP are 22.4, 20.8, 19.3, 15.6, 14.3, 14.7, 8.7, and 6.5 degrees C, respectively. Binding of APV and Ac-PEP is most sensitive to the D25N mutation, as shown by DeltaT(m) ratios [DeltaT(m)(PR)/DeltaT(m)(PR(D25N))] of 35.8 and 16.3, respectively, whereas binding of DMP323 and RPB (DeltaT(m) ratios of 1-2) is least affected. Binding of the substrate-like inhibitors RPB and Ac-PEP is nearly abolished (DeltaT(m)(PR)/DeltaT(m)(PR(D29N)) > or = 44) by the D29N mutation, whereas this mutation only moderately affects binding of the smaller inhibitors (DeltaT(m) ratios of 1.4-2.2). Of the nine FDA-approved clinical HIV-1 protease inhibitors screened, APV, RTV, and DRV competitively inhibit porcine pepsin with K(i) values of 0.3, 0.6, and 2.14 microM, respectively. DSC results were consistent with this relatively weak binding of APV (DeltaT(m) 2.7 degrees C) compared with the tight binding of Ac-PEP (DeltaT(m) > or = 17 degrees C). Comparison of superimposed structures of the PR/APV complex with those of PR/Ac-PEP and pepsin/pepstatin A complexes suggests a role for Asp215, Asp32, and Ser219 in pepsin, equivalent to Asp25, Asp25', and Asp29 in PR in the binding and stabilization of the pepsin/APV complex.  相似文献   

4.
The conformational states of side chains of catalytic Asp residues in active sites of HIV-1 protease and rhizopuspepsin in the potential field of free enzymes were studied by using theoretical conformational analysis. Structural factors that stabilize the conformation of these residues in free enzymes were revealed. Methods of molecular mechanics were used to estimate the stabilization energy of the Met46-Phe53 labile fragments of HIV-1 protease in the potential field of their nearest surrounding amino acid residues for the conformations characteristic of the free protein and similar to that of the protein in enzyme-inhibitor complexes. In solution, the conformational state of the fragments of the free enzyme was concluded to be similar to that observed in the enzyme complex with the ligand and different from that determined by X-ray diffraction analysis. This difference was ascribed to the effect of crystal packing.  相似文献   

5.
In an attempt to understand the structural reasons for differences in specificity and activity of proteinases from two retroviruses encoded by human immunodeficiency virus (HIV) and myeloblastosis associated virus (MAV), we mutated five key residues predicted to form part of the enzyme subsites S1, S2 and S3 in the substrate binding cleft of the wild-type MAV proteinase wMAV PR. These were changed to the residues occupying a similar or identical position in the HIV-1 enzyme. The resultant mutated MAV proteinase (mMAV PR) exhibits increased enzymatic activity, altered substrate specificity, a substantially changed pH activity profile and a higher pH stability close to that observed in the HIV-1 PR. This dramatic alteration of MAV PR activity achieved by site-directed mutagenesis suggests that we have identified the amino acid residues contributing substantially to the differences between MAV and HIV-1 proteinases.  相似文献   

6.
7.
8.
9.
Proteolytic activities in alfalfa weevil (Hypera postica) larval midguts have been characterized. Effects of pH, thiol activators, low-molecular weight inhibitors, and proteinase inhibitors (PIs) on general substrate hydrolysis by midgut extracts were determined. Hemoglobinolytic activity was highest in the acidic to mildly acidic pH range, but was maximal at pH 3.5. Addition of thiol-activators dithiothreitol (DTT), 2-mercaptoethanol (2-ME), or L-cysteine had little effect on hemoglobin hydrolysis at pH 3.5, but enhanced azocaseinolytic activity two to three-fold at pH 5.0. The broad cysteine PI E-64 reduced azocaseinolytic activity by 64% or 42% at pH 5 in the presence or absence of 5 mM L-cysteine, respectively. Inhibition by diazomethyl ketones, Z-Phe-Phe-CHN(2) and Z-Phe-Ala-CHN(2), suggest that cathepsins L and B are present and comprise approximately 70% and 30% of the cysteine proteolytic activity, respectively. An aspartyl proteinase component was identified using pepstatin A, which inhibited 32% (pH 3.5, hemoglobin) and 50% (pH 5, azocasein) of total proteolytic activity. This activity was completely inhibited by an aspartyl proteinase inhibitor from potato (API), and is consistent with the action of a cathepsin D-like enzyme. Hence, genes encoding PIs with specificity toward cathepsins L, B and D could potentially be effective for control of alfalfa weevil using transgenic plants.  相似文献   

10.
We demonstrate that HIV-1 aspartyl protease (AP), the enzyme essential for the maturation of the AIDS virus, covalently incorporates spermidine catalyzed by guinea pig liver transglutaminase (TGase) and human coagulation factor XIIIa. Preliminary evidence indicates that there are at least three reactive glutamyl and lysyl residues in AP which act as acyl donor and acceptor respectively in a TGase reaction. SDS-PAGE and chromatographic analyses indicate that the two TGases tested catalyze the incorporation of radioactive spermidine into pure HIV-1 AP. The chemical identification and quantitation of (gamma-glutamyl) spermidine isopeptide provide conclusive evidence that the formation of this derivative is catalyzed by TGase. These results imply that TGase-catalyzed post-translational modification of HIV-1 AP may take place in a manner similar to the ones demonstrated in porcine pancreatic phospholipase A2.  相似文献   

11.
12.
Schlick P  Skern T 《FEBS letters》2002,529(2-3):337-340
Eukaryotic initiation factor (eIF) 4GI is efficiently cleaved during picornaviral replication. eIF4GI processing has also recently been observed during HIV-1 replication. We have compared the efficiency of eIF4GI proteolysis in rabbit reticulocyte lysates during translation of mRNAs encoding the foot-and-mouth disease virus leader proteinase (L(pro)) or the HIV-1 proteinase (HIV-1(pro)). L(pro) cleaved 50% eIF4GI within 12 min whereas HIV-1(pro) required 4 h; the concentrations were 2 pg/microl (0.1 nM) for L(pro) and 60 pg/microl (2.66 nM) for HIV-1(pro). HIV-1(pro) processing of eIF4GI is therefore not quantitatively analogous to that of L(pro), suggesting that the primary function of eIF4GI cleavage in HIV-1 replication may not be protein synthesis inhibition.  相似文献   

13.
Exonuclease VII of Escherichia coli. Mechanism of action   总被引:27,自引:0,他引:27  
  相似文献   

14.
1. Certain metal ions have been identified as inhibitors (IC50 1-20 microM) of the aspartic proteinase of Human Immunodeficiency Virus Type 1 (HIV-PR). 2. By contrast most simple metal ions do not inhibit this enzyme. 3. Those that did inhibit have in common a high charge/size ratio or "hard" acidic nature, preferring to combine covalently with oxygen donor ligands. 4. Some evidence from independent X-ray crystal structure determinations suggests that the metalloinhibitors identified here may bind in the active site of the enzyme via coordination to the carboxylate side chains of the essential active site residues Asp 25 and 125. 5. Although the measured inhibition is only microM, very few enzyme-inhibitor interactions can be taking place and so more complex metalloinhibitors with ligands that can also bind to peptide side chains of the enzyme might be significantly more potent inhibitors of HIV-PR and of viral replication.  相似文献   

15.
16.
Crystallographic data show that various substrates of HIV protease occupy a remarkably uniform region within the binding site; this region has been termed the substrate envelope. It has been suggested that an inhibitor that fits within the substrate envelope should tend to evade viral resistance because a protease mutation that reduces the affinity of the inhibitor will also tend to reduce the affinity of substrate, and will hence decrease the activity of the enzyme. Accordingly, inhibitors that fit the substrate envelope better should be less susceptible to clinically observed resistant mutations, since these must also allow substrates to bind. The present study describes a quantitative measure of the volume of a bound inhibitor falling outside the substrate envelope, and observes that this quantity correlates with the inhibitor's losses in affinity to clinically relevant mutants. This measure may thus be useful as a penalty function in the design of robust HIV protease inhibitors.  相似文献   

17.
The wild-type -Phe*Pro- bond located at the N-terminus of the mature aspartic proteinase of HIV-1 was replaced by -Ile-Pro- or -Val-Pro-. By this means, processing at this cleavage junction was prevented and so, extended or precursor forms of HIV-proteinase were generated. These constructs were expressed in Escherichia coli, purified therefrom, and their specificity, activity at different pH values and susceptibility to the potent inhibitor, Ro31-8959, was assessed. A hitherto unobserved cleavage junction (at approximately Ala-Phe*Leu-Gln approximately) in the frame-shift region of the gag-pol viral genome was identified and confirmed by demonstrating cleavage of a synthetic peptide corresponding to this region. The implications for viral replication of self-processing at neural pH by proteinase whilst still present (in a precursor form) as a component of the polyprotein are considered; such reactions, however, are still blocked even at pH values as high as 8.0 by Ro31-8959.  相似文献   

18.
19.
Two small peptide substrates for HIV-1 proteinase were synthesised. The sequences chosen were basically from that of the gag-pol protein, which is the natural substrate for the proteinase. To protect these peptides from the attack of exopeptidases, the N- and C-termini were suitably protected, which also makes these substrates specific to HIV-proteinase and eliminates the requirement for highly purified enzyme.  相似文献   

20.
The success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. In addition, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号