首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the development of gamma-aminobutyric acidB (GABAB) receptors in rat cerebrum using a binding assay that has achieved specific binding levels of approximately 50% with the GABAB ligand (-)-[3H]baclofen. As early as postnatal day 1, GABAB receptors are present and are linked to both calcium- and guanosine triphosphate-binding protein (G protein)-regulatory sites, as indicated by the stimulation of binding by calcium and the inhibition of binding by the guanine nucleotide guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S). However, whereas the EC50 for the calcium effect was at a mature value in the neonate, the IC50 for the inhibition of binding by GTP gamma S was not, and declined more than two orders of magnitude by adulthood. Moreover, while many previous studies had shown that manipulation of G proteins by guanine nucleotides affects receptors affinity rather than density, our saturation analysis of binding suggests that calcium affected GABAB receptor density rather than affinity. The results therefore suggest that calcium and the manipulation of G proteins by GTP gamma S may affect the GABAB receptor by different mechanisms.  相似文献   

2.
A monoclonal antibody has been raised against a partially purified preparation for the GABAB receptor. The antibody recognized a protein of about 80 kDa in bovine brain synaptic membrane. Immunoabsorbent agarose beads conjugated with the antibody were able to remove, without visible changes in electrophoresed profiles of total proteins, over 90% of the baclofen suppressive GABA binding activity (designated herein, GABAB receptor binding activity) in the solubilized synaptic membrane fraction. Moreover, the addition of GB-1 antibody directly inhibited the GABA binding activity in the crude synaptic membrane fraction. These results indicate that the monoclonal antibody obtained here recognizes the GABA binding protein, or more specifically a GABAB receptor.  相似文献   

3.
The interaction of isoproterenol with beta-adrenergic receptor (beta AR) binding sites was measured in membranes prepared from rat brain cerebral cortical slices previously incubated in the presence or absence of gamma-aminobutyric acid (GABA) receptor agonists. Both GABA and baclofen, but not isoguvacine, altered beta AR agonist binding by increasing the affinity of both the low- and high-affinity binding sites and by increasing the proportion of low-affinity receptors. The response to baclofen was stereoselective, and the effect of GABA was not inhibited by bicuculline. The results suggest that GABAB, but not GABAA, receptor activation modifies the coupling between beta AR and stimulatory guanine nucleotide-binding protein, which may in part explain the ability of baclofen to augment isoproterenol-stimulated cyclic AMP accumulation in brain slices.  相似文献   

4.
This study shows that low nanomolar concentrations of the calcium channel antagonist nifedipine displaced [3H]baclofen labeling of gamma-aminobutyric acidB (GABAB) receptors, whereas similar concentrations of two calcium channel agonists stimulated this GABAB receptor labeling. Neither effect was likely to be due to dihydropyridine (DHP) binding to baclofen recognition sites, because the inhibitory ligand nifedipine primarily affected apparent receptor density rather than affinity. Although these results could reflect the coupling of GABAB receptors with calcium channels, they do not rule out other, possibly more direct interactions between GABAB receptors and DHP binding sites. These DHP effects occur at much lower concentrations and display other significant differences from previously reported effects of DHPs on other transmitter receptors.  相似文献   

5.
gamma-Aminobutyric acidB (GABAB) receptor recognition sites that inhibit cyclic AMP formation, open potassium channels, and close calcium channels are coupled to these effector systems by guanine nucleotide binding proteins (G proteins). These G proteins are ADP-ribosylated by islet-activating protein (IAP), also known as pertussis toxin. This process prevents receptor coupling to these G proteins. In slices of cerebral cortex and hippocampus from rat, stimulation of GABAB receptors with baclofen, a receptor agonist, also potentiates the accumulation of cyclic AMP stimulated by beta-adrenergic agonists. It was unknown whether those GABAB receptors that potentiate the beta-adrenergic response were also sensitive to IAP. IAP was injected intracerebroventricularly into rats to ADP-ribosylate IAP-sensitive G proteins. Four days after the IAP injection, 38% and 52% of these G proteins from cerebral cortex and hippocampus, respectively, were ADP-ribosylated by the IAP injection. In slices of both structures prepared from IAP-treated rats, the GABAB receptor-mediated potentiation of the beta-adrenergic receptor response was attenuated. Thus, many GABAB receptor-mediated responses are coupled to IAP-sensitive G proteins.  相似文献   

6.
K Kato  H Fukuda 《Life sciences》1985,37(3):279-288
When the rat cerebellar climbing fibers degenerated, as induced by lesioning the inferior olive with 3-acetylpyridine (3-AP), GABAB receptor binding determined with 3H-(+/-)baclofen was reduced in the cerebellum but not in the cerebral cortex of rats. Computer analysis of saturation data revealed two components of the binding sites, and indicated that decrease of the binding in the cerebellum was due to reduction in receptor density, mainly of the high-affinity sites, the Bmax of which was reduced to one-third that in the control animals. In vitro treatment with 3-AP, of the membranes prepared from either the cerebellum or the cerebral cortex, induced no alteration in the binding sites, thereby indicating that the alteration of GABAB sites induced by in vivo treatment with 3-AP is not due to a direct action of 3-AP on the receptor. GABAA and benzodiazepine receptor binding labelled with 3H-muscimol and 3H-diazepam, respectively, in both of brain regions was not affected by destruction of the inferior olive. These results provide evidence that some of the GABAB sites but neither GABAA nor benzodiazepine receptors in the cerebellum are located at the climbing fiber terminals.  相似文献   

7.
Solubilization and partial purification of GABAB receptor from bovine brain   总被引:1,自引:0,他引:1  
gamma-Aminobutyric acid (GABA)B receptor has been solubilized and partially purified by an affinity column chromatography. GABAB receptor was solubilized by 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) in the presence of asolectin. The solubilized GABAB receptor was adsorbed on baclofen-coupled epoxy-activated Sepharose 6B. The affinity matrix adsorbed 80% of the solubilized [3H]GABA binding activity to GABAB receptor, and approximately 75% of the adsorbed activity could be eluted with 1 M KC1. GABAB receptor binding in the fraction eluted from affinity column was displaced by GABA, baclofen and 2-hydroxy saclofen in a dose-dependent manner. Furthermore, the purified GABAB receptor showed approximately 2800-fold purification as compared with the original solubilized fraction and possessed the specific binding activity of 17.68 p mol/mg of protein. This binding consisted of a single binding site with a dissociation constant of 64.4 nM. The present results indicate that affinity column chromatographic procedures using baclofen-coupled epoxy-activated Sepharose 6B are suitable for the partial purification of GABAB receptor from cerebral tissues.  相似文献   

8.
将突触体膜与佛波脂(PMA),GABAB受体激动剂巴氯芬(Baclofen,BAL)预孵育一定时间后BAL对腺苷酸环化酶(AC)基础活性及forskolin刺激的AC活性的抑制率显著降低,而forskolin预孵育时,BAL对基础及forskolin刺激的AC活性的抑制率不变,表明GABAB受体与AC偶联环节的脱敏机制涉及蛋白激酶激活。而与蛋白激酶A无关,脱敏时GABAB受体的Kd值增加,本 实验  相似文献   

9.
The affinities of a number of analogues of gamma-aminobutyric acid (GABA) for GABAA and GABAB receptor sites and GABA uptake were studied using rat brain membrane preparations. Studies on the (S)-(+)- and (R)-(-)-isomers of baclofen, 3-hydroxy-4-aminobutyric acid (3-OH-GABA), and 4,5-dihydromuscimol (DHM) revealed different stereoselectivities of these synaptic mechanisms in vitro. Although (S)-3-OH-GABA and, in particular, (S)-DHM were more potent than the corresponding (R)-isomers as inhibitors of GABAA binding, the opposite stereoselectivity was demonstrated for the GABAB binding sites. Thus, (R)-3-OH-GABA and (R)-baclofen were more potent than the (S)-isomers as inhibitors of GABAB binding, (R)-baclofen being some five times more potent than (R)-3-OH-GABA. These two (R)-isomers actually have opposite orientation of the substituents on the GABA backbones, suggesting that the lipophilic substituent of (R)-baclofen interacts with a structural element of the GABAB receptor site different from that that binds the very polar hydroxy group of (R)-3-OH-GABA. The O-methylated analogue of 3-OH-GABA, 3-methoxy-4-aminobutyric acid (3-OCH3-GABA), did not interact significantly with GABAB sites. The homologues of GABA, trans-4-aminocrotonic acid (trans-ACA), muscimol, and 3-OH-GABA, that is, 5-aminovaleric acid (DAVA), trans-5-aminopent-2-enoic acid, homomuscimol, and 3-hydroxy-5-aminovaleric acid (3-OH-DAVA), respectively, were generally much weaker than the parent compounds, whereas 2-hydroxy-5-aminovaleric acid (2-OH-DAVA) showed a significantly higher affinity for GABAB sites than the corresponding GABA analogue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Up to 60% of gamma-[3H]aminobutyric acid ([3H]GABA) bound specifically to rat cerebellar membranes in the absence of Ca2+ was insensitive to the GABAA antagonist bicuculline and to the GABAB agonist baclofen. This indicates that a significant component of specifically bound [3H]GABA is associated with non-GABAA, non-GABAB binding sites. The presence of this binding component appeared seasonal, peaking in the month of September (early spring) each year over a 4-year period. The calcium independence and bicuculline and baclofen insensitivity of the binding indicate that this binding is not to the classical GABAA and GABAB binding sites. High concentrations of muscimol and isoguvacine inhibited non-GABAA, non-GABAB binding. Scatchard analysis of the non-GABAA, non-GABAB binding sites indicated two kinetic components: KD1 = 42 nM and KD2 = 9.2 microM; Bmax1 = 1.6 pmol/mg of protein and Bmax2 = 28 pmol/mg of protein.  相似文献   

11.
In immature and mature primary cultured rat calvarial osteoblasts, both mRNA and corresponding proteins were constitutively expressed for 2 splice variants of GABA(B) receptor (GABA(B)R) subunits but not for any known GABA(A) and GABA(C) receptor subunits. The agonist for GABA(B)R baclofen significantly inhibited cAMP formation induced by forskolin in a manner sensitive to the antagonist 2-hydroxysaclofen. Similar expression was seen with mRNA for GABA(B)R-1a and -1b splice variants in the murine calvarial osteoblast cell line MC3TC-E1 cells cultured for 7-21 days in vitro (DIV). In these MC3T3-E1 cells, baclofen not only inhibited the activity of alkaline phosphatase, but also exacerbated Ca2+ accumulation, throughout the culture period up to 28 DIV. These results suggest that GABA may play an unidentified role in mechanisms associated with cellular proliferation, differentiation, and/or development through functional GABA(B)R constitutively expressed in cultured osteoblasts.  相似文献   

12.
Central and peripheral benzodiazepine binding sites were studied in vitro after the administration of GABAA and GABAB agonists. Cerebral cortex and kidney homogenates were used in this study. Muscimol (1.5 mg/kg, intraperitoneally) pretreatment significantly increased the affinity of benzodiazepine binding sites not only in the cerebral cortex but also in the kidneys. Similar changes were obtained with (-) and (+) baclofen (5 mg/kg, intraperitoneally), with the only exception that (-) baclofen in addition to changes in the affinity caused a marked decrease in the number of binding sites in both structures studied. The mechanism of action of GABA agonists on peripheral benzodiazepine binding sites is discussed.  相似文献   

13.
14.
Neurotransmitters have been implicated in regulating growth cone motility and guidance in the developing nervous system. Anatomical and electrophysiological studies show the presence of functional GABAB receptors on adult olfactory receptor neuron (ORN) nerve terminals. Using antisera against the GABAB R1a/b receptor isoforms we show that developing mouse olfactory receptor neurons express GABAB receptors from embryonic day 14 through to adulthood. GABAB receptors are present on axon growth cones from both dissociated ORNs and olfactory epithelial explants. Neurons in the olfactory bulb begin to express glutamic acid decarboxylase (GAD), the synthetic enzyme for GABA, from E16 through to adulthood. When dissociated ORNs were cultured in the presence of the GABAB receptor agonists, baclofen or SKF97541, neurite outgrowth was significantly reduced. Concurrent treatment of the neurons with baclofen and the GABAB receptor antagonist CGP54626 prevented the inhibitory effects of baclofen on ORN neurite outgrowth. These results show that growing ORN axons express GABAB receptors and are sensitive to the effects of GABAB receptor activation. Thus, ORNs in vivo may detect GABA release from juxtaglomerular cells as they enter the glomerular layer and use this as a signal to limit their outgrowth and find synaptic targets in regeneration and development.  相似文献   

15.
Effects of pentobarbital pellet implantation on [3H]baclofen binding in the frontal cortex of cerebellum of rat brains were examined. In the frontal cortex, pentobarbital tolerance caused an increase in the number of binding sites (Bmax) without changing their affinity (KD). Twenty-four hours after withdrawal of the pentobarbital pellets, there was a significant increase in the KD and Bmax values. Cerebellar binding, in contrast, was not significantly changed in any of the treatment groups. Addition of 1 mM of pentobarbital directly to binding assays using cortical membrane produced as increase in KD without a change in Bmax.In vitro, pentobarbital affected neither the KD nor the Bmax in the cerebellar [3H]baclofen binding. These results suggest that like the GABAA receptor, [3H]baclofen binding to the GABAB receptor in rat frontal cortex was affected by pentobarbital tolerance and dependence, and that there are regional differences in the properties of the GABAB receptor.  相似文献   

16.
We have used double-label in situ hybridization techniques to examine the cellular localization of GABAB receptor mRNA in relation to serotonin transporter mRNA and glutamic acid decarboxylase mRNA in the rat dorsal raphe, median raphe and raphe magnus nuclei. The degree of cellular co-localization of these markers notably varied among the different nuclei. In the dorsal raphe, cell bodies showing GABAB receptor mRNA were very abundant, the 85% being also labelled for serotonin transporter mRNA, and a low proportion (5%) showing glutamic acid decarboxylase mRNA. In the median raphe, the level of co-expression of GABAB receptor mRNA with serotonin transporter mRNA was significantly lower. Some cells were also identified that contained GABAB receptor mRNA in the absence of either one of the other mRNA species studied. Our results support the presence of GABAB receptors in serotonergic as well as GABAergic neurones in the dorsal and median raphe, providing the anatomical basis for the reported dual inhibitory/disinhibitory effect of the GABAB agonist baclofen on serotonergic function.  相似文献   

17.
18.
Cerebellar GABAB receptors modulate function of GABAA receptors.   总被引:3,自引:0,他引:3  
Interactions between GABAA and GABAB receptors were studied using muscimol-stimulated uptake of 36Cl- by membrane vesicles from mouse cerebellum. Baclofen inhibited muscimol-stimulated 36Cl- uptake and this action was more pronounced with longer flux times (30 vs. 3 s) and after predesensitization of GABAA receptors. Baclofen also inhibited 36Cl- flux by cortical membranes but was more effective with cerebellar preparations. The action of baclofen was stereoselective, calcium-dependent, and blocked by the GABAB receptor antagonist 2-OH-saclofen. It was mimicked by GTP-gamma-S but not by GDP-beta-S, which suggests that baclofen may be acting via a G protein. The action of baclofen was inhibited by U73122, an inhibitor of phospholipase C. However, the potassium channel blockers tetraethylammonium or Ba2+ did not affect the action of baclofen. The results show that activation of GABAB receptors can inhibit the function of GABAA receptors and suggest that this action involves either a nondesensitizing subtype of GABAA receptor or the rate or recycling of desensitized to nondesensitized receptors. We speculate that this action of baclofen results from activation of phospholipase C and phosphorylation of a subtype of GABAA receptor by protein kinase C.  相似文献   

19.
GABA-induced potassium channels in cultured neurons   总被引:3,自引:0,他引:3  
When gamma-aminobutyric acid (GABA) or baclofen were applied to cultured rat hippocampal neurons, single-channel potassium currents appeared after a delay of 30 s or more in patches of membrane on the cell surface isolated from the agonists by the recording pipette. The appearance of currents in patches not exposed to agonist, the delay in their appearance and the suppression of currents in cells pre-incubated with pertussis toxin indicate the involvement of an intracellular second messenger system. The channels were associated with a GABAB receptor rather than a GABAA receptor as they were blocked by baclofen, a GABAB antagonist, but were not affected by bicuculline, a GABAA antagonist. A feature of the single channel currents was their variable amplitude: they had a maximum conductance of ca. 70 pS and displayed many lower conductance states that were integral multiples of 5-6 pS. In several cells exposed to GABA or baclofen, first small currents and then progressively larger currents appeared: current amplitude was a multiple of an elementary current. It is suggested that binding of GABA to GABAB receptors activates a second messenger system causing opening of oligomeric potassium channels.  相似文献   

20.
Two gamma-hydroxybutyric acid (GHB) analogues, trans-gamma-hydroxycrotonic acid (t-HCA) and gamma-(p-methoxybenzyl)-gamma-hydroxybutyric acid (NCS-435) displaced [3H]GHB from GHB receptors with the same affinity as GHB but, unlike GHB, failed to displace [3H]baclofen from GABAB receptors. The effect of the GHB analogues, GHB and baclofen, on G protein activity and hippocampal extracellular glutamate levels was compared. While GHB and baclofen stimulated 5'-O-(3-[35S]thiotriphospate) [35S]GTPgammaS binding both in cortex homogenate and cortical slices, t-HCA and NCS-435 were ineffective up to 1 mm concentration. GHB and baclofen effect was suppressed by the GABAB antagonist CGP 35348 but not by the GHB receptor antagonist NCS-382. Perfused into rat hippocampus, 500 nm and 1 mm GHB increased and decreased extracellular glutamate levels, respectively. GHB stimulation was suppressed by NCS-382, while GHB inhibition by CGP 35348. t-HCA and NCS-435 (0.1-1000 microm) locally perfused into hippocampus increased extracellular glutamate; this effect was inhibited by NCS-382 (10 microm) but not by CGP 35348 (500 microm). The results indicate that GHB-induced G protein activation and reduction of glutamate levels are GABAB-mediated effects, while the increase of glutamate levels is a GHB-mediated effect. Neither t-HCA nor NCS-435 reproduced GHB sedative/hypnotic effect in mice, confirming that this effect is GABAB-mediated. The GHB analogues constitute important tools for understanding the physiological role of endogenous GHB and its receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号