首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calreticulin (CRT) and calnexin (CLNX) are lectin chaperones that participate in protein folding in the endoplasmic reticulum (ER). CRT is a soluble ER lumenal protein, whereas CLNX is a transmembrane protein with a cytosolic domain that contains two consensus motifs for protein kinase (PK) C/proline- directed kinase (PDK) phosphorylation. Using confocal Ca(2+) imaging in Xenopus oocytes, we report here that coexpression of CLNX with sarco endoplasmic reticulum calcium ATPase (SERCA) 2b results in inhibition of intracellular Ca(2+) oscillations, suggesting a functional inhibition of the pump. By site-directed mutagenesis, we demonstrate that this interaction is regulated by a COOH-terminal serine residue (S562) in CLNX. Furthermore, inositol 1,4,5-trisphosphate- mediated Ca(2+) release results in a dephosphorylation of this residue. We also demonstrate by coimmunoprecipitation that CLNX physically interacts with the COOH terminus of SERCA2b and that after dephosphorylation treatment, this interaction is significantly reduced. Together, our results suggest that CRT is uniquely regulated by ER lumenal conditions, whereas CLNX is, in addition, regulated by the phosphorylation status of its cytosolic domain. The S562 residue in CLNX acts as a molecular switch that regulates the interaction of the chaperone with SERCA2b, thereby affecting Ca(2+) signaling and controlling Ca(2+)-sensitive chaperone functions in the ER.  相似文献   

2.
Calcium (Ca(2+)) plays a pivotal role in both cellular signaling and protein synthesis. However, it is not well understood how calcium metabolism and synthesis of secreted and membrane-bound proteins are related. Here we demonstrate that the sarco(endo)plasmic reticulum Ca(2+) ATPase 2b (SERCA2b), which maintains high Ca(2+) concentration in the lumen of the endoplasmic reticulum, interacts specifically with the human delta opioid receptor during early steps of receptor biogenesis in human embryonic kidney 293 cells. The interaction involves newly synthesized incompletely folded receptor precursors, because the association between the delta opioid receptor and SERCA2b (i) was short-lived and took place soon after receptor translation, (ii) was not affected by misfolding of the receptor, and (iii) decreased if receptor folding was enhanced by opioid receptor pharmacological chaperone. The physical association with SERCA2b was found to be a universal feature among G protein-coupled receptors within family A and was shown to occur also between the endogenously expressed luteinizing hormone receptor and SERCA2b in rat ovaries. Importantly, active SERCA2b rather than undisturbed Ca(2+) homeostasis was found to be essential for delta opioid receptor biogenesis, as inhibition of its Ca(2+) pumping activity by thapsigargin reduced the interaction and impaired the efficiency of receptor maturation, two phenomena that were not affected by a Ca(2+) ionophore A23187. Nevertheless, inhibition of SERCA2b did not compromise the functionality of receptors that were able to mature. Thus, we propose that the association with SERCA2b is required for efficient folding and/or membrane integration of G protein-coupled receptors.  相似文献   

3.
The ubiquitous sarco(endo)plasmic reticulum (SR/ER) Ca(2+) ATPase (SERCA2b) and secretory-pathway Ca(2+) ATPase (SPCA1a) belong both to the P(2A)-type ATPase subgroup of Ca(2+) transporters and play a crucial role in the Ca(2+) homeostasis of respectively the ER and Golgi apparatus. They are ubiquitously expressed, but their low abundance precludes purification for crystallization. We have developed a new strategy for purification of recombinant hSERCA2b and hSPCA1a that is based on overexpression in yeast followed by a two-step affinity chromatography method biasing towards properly folded protein. In a first step, these proteins were purified with the aid of an analogue of the SERCA inhibitor thapsigargin (Tg) coupled to a matrix. Wild-type (WT) hSERCA2b bound efficiently to the gel, but its elution was hampered by the high affinity of SERCA2b for Tg. Therefore, a mutant was generated carrying minor modifications in the Tg-binding site showing a lower affinity for Tg. In a second step, reactive dye chromatography was performed to further purify and concentrate the properly folded pumps and to exchange the detergent to one more suitable for crystallization. A similar strategy was successfully applied to purify WT SPCA1a. This study shows that it is possible to purify functionally active intracellular Ca(2+) ATPases using successive thapsigargin and reactive dye affinity chromatography for future structural studies. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

4.
Three isoforms of the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) are known to exist in mammalian cells. This study investigated the effects of thapsigargin and a variety of commonly used hydrophobic inhibitors on these SERCA isoforms (i.e. SERCA1b, SERCA2b, and SERCA3a), which were transiently expressed in COS-7 cells. In addition, the study assessed whether the introduction of the phenylalanine to valine mutation at position 256 (F256V), known to reduce the potency of thapsigargin inhibition in avian SERCA1, affects the other SERCA isoforms in a similar manner and whether this mutation also affects the inhibition by other inhibitors. This study has shown that the sensitivity to thapsigargin is different for the SERCA isoforms (apparent K(i) values being 0.21, 1.3, and 12 nm for SERCA1b, SERCA2b, and SERCA3a, respectively). The reduction in thapsigargin sensitivity caused by the F256V mutation was also different for the three isoforms, with SERCA2b only being modestly affected by this mutation. Although some of the other inhibitors investigated (i.e. cyclopiazonic acid and curcumin) showed some differences in their sensitivity toward the SERCA isoforms, most were little affected by the F256V mutation, indicating that they inhibit the Ca(2+)-ATPase by binding to sites on SERCA distinct from that of thapsigargin.  相似文献   

5.
6.
7.
Li S  Hao B  Lu Y  Yu P  Lee HC  Yue J 《PloS one》2012,7(2):e31905
Intracellular pH (pHi) and Ca(2+) regulate essentially all aspects of cellular activities. Their inter-relationship has not been mechanistically explored. In this study, we used bases and acetic acid to manipulate the pHi. We found that transient pHi rise induced by both organic and inorganic bases, but not acidification induced by acid, produced elevation of cytosolic Ca(2+). The sources of the Ca(2+) increase are from the endoplasmic reticulum (ER) Ca(2+) pools as well as from Ca(2+) influx. The store-mobilization component of the Ca(2+) increase induced by the pHi rise was not sensitive to antagonists for either IP(3)-receptors or ryanodine receptors, but was due to inhibition of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA), leading to depletion of the ER Ca(2+) store. We further showed that the physiological consequence of depletion of the ER Ca(2+) store by pHi rise is the activation of store-operated channels (SOCs) of Orai1 and Stim1, leading to increased Ca(2+) influx. Taken together, our results indicate that intracellular alkalinization inhibits SERCA activity, similar to thapsigargin, thereby resulting in Ca(2+) leak from ER pools followed by Ca(2+) influx via SOCs.  相似文献   

8.
Endoplasmic reticulum quality control and apoptosis   总被引:7,自引:0,他引:7  
  相似文献   

9.
We have previously characterized an insulin receptor substrate 1 (IRS-1)-overexpressing beta-cell line. These beta-cells demonstrated elevated fractional insulin secretion and elevated cytosolic Ca(2+) levels compared with wild-type and vector controls. This effect of IRS-1 may be mediated via an interaction with the sarco-endoplasmic reticulum calcium ATPase (SERCA). Here we demonstrate that IRS-1 and IRS-2 localize to an endoplasmic reticulum (ER)-enriched fraction in beta-cells using subcellular fractionation. We also observe co-localization of both IRS-1 and IRS-2 with ER marker proteins using immunofluorescent confocal microscopy. Furthermore, immuno-electron microscopy studies confirm that IRS-1 and SERCA3b localize to vesicles derived from the ER. In Chinese hamster ovary-T (CHO-T) cells transiently transfected with SERCA3b alone or together with IRS-1, SERCA3b co-immunoprecipitates with IRS-1. This interaction is enhanced with insulin treatment. SERCA3b also co-immunoprecipitates with IRS-1 in wild-type and IRS-1-overexpressing beta-cell lines. Ca(2+) uptake in ER-enriched fractions prepared from wild-type and IRS-1-overexpressing cell lines shows no significant difference, indicating that the previously observed decrease in Ca(2+) uptake by IRS-1-overexpressing cells is not the result of a defect in SERCA. Treatment of wild-type beta-cells with thapsigargin, an inhibitor of SERCA, resulted in an increase in glucose-stimulated fractional insulin secretion similar to that observed in IRS-1-overexpressing cells. The colocalization of IRS proteins and SERCA in the ER of beta-cells increases the likelihood that these proteins can interact with one another. Co-immunoprecipitation of IRS-1 and SERCA in CHO-T cells and beta-cells confirms that these proteins do indeed interact directly. Pharmacological inhibition of SERCA in beta-cells results in enhanced secretion of insulin. Taken together, our data suggest that interaction between IRS proteins and SERCA is an important regulatory step in insulin secretion.  相似文献   

10.
11.
Ca2+-dependent redox modulation of SERCA 2b by ERp57   总被引:2,自引:0,他引:2  
We demonstrated previously that calreticulin (CRT) interacts with the lumenal COOH-terminal sequence of sarco endoplasmic reticulum (ER) calcium ATPase (SERCA) 2b to inhibit Ca2+ oscillations. Work from other laboratories demonstrated that CRT also interacts with the ER oxidoreductase, ER protein 57 (also known as ER-60, GRP58; ERp57) during folding of nascent glycoproteins. In this paper, we demonstrate that ERp57 overexpression reduces the frequency of Ca2+ oscillations enhanced by SERCA 2b. In contrast, overexpression of SERCA 2b mutants defective in cysteines located in intralumenal loop 4 (L4) increase Ca2+ oscillation frequency. In vitro, we demonstrate a Ca2+-dependent and -specific interaction between ERp57 and L4. Interestingly, ERp57 does not affect the activity of SERCA 2a or SERCA 2b mutants lacking the CRT binding site. Overexpression of CRT domains that disrupt the interaction of CRT with ERp57 behave as dominant negatives in the Ca2+ oscillation assay. Our results suggest that ERp57 modulates the redox state of ER facing thiols in SERCA 2b in a Ca2+-dependent manner, providing dynamic control of ER Ca2+ homeostasis.  相似文献   

12.
Na(+)- Ca(2+) exchanger (NCX) has been proposed to play a role in refilling the sarco/endoplasmic reticulum (SER) Ca(2+) pool along with the SER Ca(2+) pump (SERCA). Here, SERCA inhibitor thapsigargin was used to determine the effects of SER Ca(2+) depletion on NCX-SERCA interactions in smooth muscle cells cultured from pig coronary artery. The cells were Na(+)-loaded and then placed in either a Na(+)-containing or in a Na(+)-substituted solution. Subsequently, the difference in Ca(2+) entry between the two groups was examined and defined as the NCX mediated Ca(2+) entry. The NCX mediated Ca(2+) entry in the smooth muscle cells was monitored using two methods: Ca(2+)sensitive fluorescence dye Fluo-4 and radioactive Ca(2+). Ca(2+)-entry was greater in the Na(+)-substituted cells than in the Na(+)-containing cells when measured by either method. This difference was established to be NCX-mediated as it was sensitive to the NCX inhibitors. Thapsigargin diminished the NCX mediated Ca(2+) entry as determined by either method. Immunofluorescence confocal microscopy was used to determine the co-localization of NCX1 and subsarcolemmal SERCA2 in the cells incubated in the Na(+)-substituted solution with or without thapsigargin. SER Ca(2+) depletion with thapsigargin increased the co-localization between NCX1 and the subsarcolemmal SERCA2. Thus, inhibition of SERCA2 leads to blockade of constant Ca(2+) entry through NCX1 and also increases proximity between NCX1 and SERCA2. This blockade of Ca(2+) entry may protect the cells against Ca(2+)-overload during ischemia-reperfusion when SERCA2 is known to be damaged.  相似文献   

13.
14.
Two agonist-releasable Ca(2+)stores have been identified in human platelets differentiated by the distinct sensitivity of their SERCA isoforms to thapsigargin (TG) and 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ). Here we have examined whether the SERCA isotypes might be involved in store-operated Ca(2+)entry (SOCE) activated by the physiological agonist thrombin in human platelets. Ca(2+)-influx evoked by thrombin (0.01 U/mL) reached a maximum after 3 min, which was consistent with the decrease in the Ca(2+)content in the stores; afterwards, the extent of SOCE decreased with no correlation with the accumulation of Ca(2+)in the stores. Inhibition of SERCA2b, by 10 nM TG, and SERCA3, with 20 microM TBHQ, individually or simultaneously, accelerated Ca(2+) store discharge and subsequently enhanced the extent of SOCE stimulated by thrombin. In addition, TG and TBHQ modified the time course of thrombin-evoked SOCE from a transient to a sustained increase in Ca(2+) influx, which reveals a negative role for SERCAs in the regulation of SOCE. This effect was consistent under conditions that inhibit Ca(2+) extrusion by PMCA or the Na(+)/Ca(2+) exchanger. Coimmunoprecipitation experiments revealed that thrombin stimulates direct interaction between SERCA2b and 3 with the hTRPC1 channel, an effect that was found to be independent of SERCA activity. In summary, our results suggest that SERCA2b and 3 modulate thrombin-stimulated SOCE probably by direct interaction with the hTRPC1 channel in human platelets.  相似文献   

15.
In addition to disrupting the regulated intramembraneous proteolysis of key substrates, mutations in the presenilins also alter calcium homeostasis, but the mechanism linking presenilins and calcium regulation is unresolved. At rest, cytosolic Ca(2+) is maintained at low levels by pumping Ca(2+) into stores in the endoplasmic reticulum (ER) via the sarco ER Ca(2+)-ATPase (SERCA) pumps. We show that SERCA activity is diminished in fibroblasts lacking both PS1 and PS2 genes, despite elevated SERCA2b steady-state levels, and we show that presenilins and SERCA physically interact. Enhancing presenilin levels in Xenopus laevis oocytes accelerates clearance of cytosolic Ca(2+), whereas higher levels of SERCA2b phenocopy PS1 overexpression, accelerating Ca(2+) clearance and exaggerating inositol 1,4,5-trisphosphate-mediated Ca(2+) liberation. The critical role that SERCA2b plays in the pathogenesis of Alzheimer's disease is underscored by our findings that modulating SERCA activity alters amyloid beta production. Our results point to a physiological role for the presenilins in Ca(2+) signaling via regulation of the SERCA pump.  相似文献   

16.
Total membrane vesicles isolated from Tritrichomonas foetus showed an ATP-dependent Ca(2+) uptake, which was not sensitive to 10 microM protonophore FCCP but was blocked by orthovanadate, the inhibitor of P-type ATPases (I(50)=130 microM), and by the Ca(2+)/H(+) exchanger, A-23187. The Ca(2+) uptake was prevented also by thapsigargin, an inhibitor of the SERCA Ca(2+)-ATPases. The sensitivity of the Ca(2+) uptake by the protozoan membrane vesicles to thapsigargin was similar to that of Ca(2+)-ATPase from rabbit muscle sarcoplasmic reticulum. Fractionation of the total membrane vesicles in sucrose density gradient revealed a considerable peak of Ca(2+) transport activity that co-migrated with the Golgi marker guanosine diphosphatase (GDPase). Electron microscopy confirmed that membrane fractions of the peak were enriched with the Golgi membranes. The Golgi Ca(2+)-ATPase contributed to the Ca(2+) uptake by all membrane vesicles 80-85%. We conclude that: (i) the Golgi and/or Golgi-like vesicles form the main Ca(2+) store compartment in T. foetus; (ii) Ca(2+) ATPase is responsible for the Ca(2+) sequestering in this protozoan, while Ca(2+)/H(+) antiporter is not involved in the process; (iii) the Golgi pump of this ancient eukaryotic microorganism appears to be similar to the enzymes of the SERCA family by its sensitivity to thapsigargin.  相似文献   

17.
BI-1 (Bax inhibitor-1) is an evolutionarily conserved multitransmembrane protein that resides in the endoplasmic reticulum (ER) and that has documented cytoprotective functions in both animals and plants. Recent studies indicate that BI-1 shares in common with Bcl-2/Bax family proteins the ability to regulate the amounts of Ca(2+) that can be released from the ER by agents, such as the ER-Ca(2+)-ATPase (SERCA) inhibitor thapsigargin (TG). Using an ER-targeted, Ca(2+) indicator (cameleon), with characteristics optimized for measuring ER Ca(2+) ([Ca(2+)](er)), we studied the effects of BI-1 on [Ca(2+)](er) in resting and TG-treated cells. Similar to cells overexpressing antiapoptotic Bcl-2 or Bcl-X(L), overexpression of BI-1 resulted in lower resting [Ca(2+)](er), with concomitantly less Ca(2+) released into the cytosol upon stimulation by TG and with a higher rate of Ca(2+) leakage from the ER. Co-expression of SERCA restored levels of [Ca(2+)](er) to normal, showing opposing actions of the ER-Ca(2+)ATPase and BI-1 on ER Ca(2+) homeostasis. Conversely, cells with deficient BI-1 have increased [Ca(2+)](er), and release more Ca(2+) into the cytosol when challenged with TG. In BI-1-deficient cells, Bcl-X(L) fails to reduce [Ca(2+)](er), indicating that BI-1 functions downstream of Bcl-X(L). In bax(-/-)bak(-/-) double knock-out cells, both BI-1 and Bcl-X(L) retained their ability to reduce [Ca(2+)](er), suggesting that BI-1 and Bcl-X(L) operate downstream of or parallel to Bax/Bak. The findings reveal a hierarchy of functional interactions of BI-1 with Bcl-2/Bax family proteins in regulating ER Ca(2+) homeostasis.  相似文献   

18.
Regulation of nucleoplasmic calcium (Ca(2+)) concentration may occur by the mobilization of perinuclear luminal Ca(2+)pools involving specific Ca(2+)pumps and channels of both inner and outer perinuclear membranes. To determine the role of perinuclear luminal Ca(2+), we examined freshly cultured 10 day-old embryonic chick ventricular cardiomyocytes. We obtained evidence suggesting the existence of the molecular machinery required for the bi-directional Ca(2+)fluxes using confocal imaging techniques. Embryonic cardiomyocytes were probed with antibodies specific for ryanodine-sensitive Ca(2+)channels (RyR2), sarco/endoplasmic reticulum Ca(2+)ATPase (SERCA2)-pumps, and fluorescent BODIPY derivatives of ryanodine and thapsigargin. Using immunocytochemistry techniques, confocal imaging showed the presence of RyR2 Ca(2+)channels and SERCA2-pumps highly localized to regions surrounding the nucleus, referable to the nuclear envelope. Results obtained from Fluo-3, AM loaded ionomycin-perforated embryonic cardiomyocytes demonstrated that gradual increases of extranuclear Ca(2+)from 100 to 1600 nM Ca(2+)was localized to the nucleus. SERCA2-pump inhibitors thapsigargin and cyclopiazonic acid showed a concentration-dependent inhibition of nuclear Ca(2+)loading. Furthermore, ryanodine demonstrated a biphasic concentration-dependence upon active nuclear Ca(2+)loading. The concomitant addition of thapsigargin or cyclopiazonic acid with ryanodine at inhibitory concentrations caused an significant increase in nuclear Ca(2+)loading at low concentrations of extranuclear added Ca(2+). Our results show that the perinuclear lumen in embryonic chick ventricular cardiomyocytes is capable of autonomously regulating nucleoplasmic Ca(2+)fluxes.  相似文献   

19.
20.
Variations in calcium concentration within the endoplasmic reticulum ([Ca(2+)](ER)) may play a role in cell growth. This study evaluates the regulation of calcium pools by growth modulators of prostate cancer (PC) cells, the insulin growth factor (IGF), and the tumor necrosis growth factor-alpha (TNFalpha) as well as evaluating the possible role of [Ca(2+)](ER) variations as signals for growth modulation. We show that IGF (5 ng/ml), which increases cell growth, induces an increase in [Ca(2+)](ER) whereas TNFalpha (1 ng/ml) which reduces cell proliferation and induces apoptosis, reduces [Ca(2+)](ER). IGF-induced [Ca(2+)](ER) increase is correlated to an overexpression of the sarcoendoplasmic calcium-ATPase 2B (SERCA2b), whereas TNFalpha-induced [Ca(2+)](ER) decrease is associated to a reduction in SERCA2b expression. Pretreatment with epidermal growth factors (EGF) or IGF does not prevent TNFalpha from affecting the induction of apoptosis, [Ca(2+)](ER) reduction and SERCA2b downregulation. Reduction in [Ca(2+)](ER) induced by thapsigargin (TG) (from 1 pM to 1 microM, 48 h) reduces LNCaP growth in a dose dependent manner and induces apoptosis when cells are treated with 1 microM TG. We also show that a transient TG application (1 pM, 1 nM, 1 microM 15 min) is insufficient to induce a long lasting decrease in [Ca(2+)](ER), since [Ca(2+)](ER) remains identical to the control for 48 h following TG application. These treatments (1 pM and 1 nM, 15 min) do not modify cell growth. However, TG (1 microM, 15 min) induces apoptosis. We thus identify [Ca(2+)](ER) and SERCA2b as a central targets for causing LNCaP PC cell life or death induced by growth modulators. Furthermore our results indicate that calcium pool contents can regulate cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号