首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have stably expressed a recombinant form of apo(a) in a human embryonic kidney cell line. The engineered protein (predicted mass of 250 kDa) contains 17 copies of the apo(a) domain, which resembles kringle 4 of plasminogen, followed by the plasminogen-like kringle 5 and protease-like domain of apo(a). The recombinant protein [r-apo(a)] was isolated from cell culture media by immunoaffinity chromatography, and its physical properties were studied. As is the case for apo(a) isolated from plasma-derived Lp(a), r-apo(a) is highly glycosylated (23% by weight), containing both N- and O-linked glycans, which results in an observed molecular mass of 500 kDa by SDS-PAGE. The high sialic acid content was reflected in a pI of 4.3 for the r-apo(a). Two subpopulations of r-apo(a) secreted by the permanent cell line were identified with respect to lysine-Sepharose binding; the majority of the r-apo(a) bound specifically to this matrix and was eluted with epsilon-aminocaproic acid (epsilon-ACA). When the r-apo(a) plasmid was used to transfect a human hepatoma cell line, lipoprotein particles were secreted containing the disulfide-linked complex of apoB-100 and the r-apo(a). The density of these particles was shown to be heterogeneous, with the majority of the r-Lp(a) floating in the density range of plasma-derived Lp(a).  相似文献   

2.
Apolipoprotein(a) [apo(a)] is the distinctive glycoprotein of lipoprotein Lp(a), which is disulfide linked to the apo B100 of a low density lipoprotein particle. Apo(a) possesses a high degree of sequence homology with plasminogen, the precursor of plasmin, a fibrinolytic and pericellular proteolytic enzyme. Apo(a) exists in several isoforms defined by a variable number of copies of plasminogen-like kringle 4 and single copies of kringle 5, and the protease region including the backbone positions for the catalytic triad (Ser, His, Asp). A lysine-binding site that is similar to that of plasminogen kringle 4 is present in apo(a) kringle IV type 10. These kringle motifs share some amino acid residues (Asp55, Asp57, Phe64, Tyr62, Trp72, Arg71) that are key components of their lysine-binding site. The spatial conformation and the function of this site in plasminogen kringle 4 and in apo(a) kringle IV-10 seem to be identical as indicated by (i) the ability of apo(a) to compete with plasminogen for binding to fibrin, and (ii) the neutralisation of the lysine-binding function of these kringles by a monoclonal antibody that recognises key components of the lysine-binding site. In contrast, the lysine-binding site of plasminogen kringle 1 contains a Tyr residue at positions 64 and 72 and is not recognised by this antibody. Plasminogen bound to fibrin is specifically recognised and cleaved by the tissue-type plasminogen activator at Arg561-Val562, and is thereby transformed into plasmin. A Ser-Ile substitution at the activation cleavage site is present in apo(a). Reinstallation of the Arg-Val peptide bond does not ensure cleavage of apo(a) by plasminogen activators. These data suggest that the stringent specificity of tissue-type plasminogen activator for plasminogen requires molecular interactions with structures located remotely from the activation disulfide loop. These structures ensure second site interactions that are most probably absent in apo(a).  相似文献   

3.
Hancock MA  Spencer CA  Koschinsky ML 《Biochemistry》2004,43(38):12237-12248
Lipoprotein(a) [Lp(a)] is suggested to link atherosclerosis and thrombosis owing to the similarity between the apolipoprotein(a) [apo(a)] moiety of Lp(a) and plasminogen. Lp(a) may interfere with tPA-mediated plasminogen activation in fibrinolysis, thereby generating a hypercoaguable state in vivo. The present study employed surface plasmon resonance (SPR) to examine the binding interaction between plasminogen and a physiologically relevant, 17-kringle recombinant apo(a) species [17K r-apo(a)] in real time. Native, intact Glu(1)-plasminogen bound to apo(a) with substantially higher affinity (K(D) approximately 0.3 microM) compared to a series of plasminogen fragments (K1-5, K1-3, K4, K5P, and tail domain) that interacted weakly with apo(a) (K(D) > 50 microM). Treatment of Glu(1)-plasminogen with citraconic anhydride (a lysine modification reagent) completely abolished binding to wild-type 17K r-apo(a), whereas citraconylated 17K r-apo(a) decreased binding to wild-type Glu(1)-plasminogen by approximately 50%; inhibition of binding was also observed using the lysine analogue epsilon-aminocaproic acid. Whereas native Glu(1)-plasminogen exhibited monophasic binding to 17K r-apo(a), truncated Lys(78)-plasminogen exhibited biphasic binding. Altering Glu(1)-plasminogen from its native, closed conformation (in chloride buffer) to an open conformation (in acetate buffer) also yielded biphasic isotherms. These SPR data are consistent with a two-state kinetic model in which a conformational change in the plasminogen-apo(a) complex may occur following the initial binding event. Differential binding kinetics between Glu(1)-/Lys(78)-plasminogen and apo(a) may explain why Lp(a) is a stronger inhibitor of tPA-mediated Glu(1)-plasminogen activation compared to Lys(78)-plasminogen activation.  相似文献   

4.
Lipoprotein (a) [Lp(a)] is a LDL-like particle with one apolipoprotein(a) [apo(a)] covalently bound to apolipoprotein B, the structural protein of Low Density Lipoprotein (LDL). Lewis Lung Carcinoma (LL/2) cells exhibited delayed growth and reduced angiogenesis in apo(a) transgenic mice, expressing a recombinant apo(a) [r-apo(a)] with 18 kringle 4 repeats. The mean microvessel density of subcutaneous LL/2 tumors from apo(a) transgenic mice was significantly lower than that of tumors from control wild type mice. CHO cells secreting a truncated apo(a) protein with only six kringle 4 repeats did not exhibit delayed tumor growth nor did it impair angiogenesis. These data point to an unappreciated role of human apo(a) in angiogenesis and cancer biology. As angiogenesis is necessary for reendothelialization following vascular injury, suppression of angiogenesis by apo(a) may also contribute to the atherogenicity of apo(a). The differences between the truncated apo(a) and r-apo(a) are consistent with the higher atherogenicity of higher molecular weight isoforms.  相似文献   

5.
Elevated plasma concentrations of Lp(a) [lipoprotein(a)] are an emerging risk factor for atherothrombotic disease. Apo(a) [apolipoprotein(a)], the unique glycoprotein component of Lp(a), contains tandem repeats of a plasminogen kringle (K) IV-like domain. In the light of recent studies suggesting that apo(a)/Lp(a) affects endothelial function, we evaluated the effects of apo(a)/Lp(a) on growth and migration of cultured HUVECs (human umbilical-vein endothelial cells). Two full-length r-apo(a) [recombinant apo(a)] variants (12K and 17K), as well as Lp(a), were able to stimulate HUVEC growth and migration to a comparable extent; 17K r-apo(a) also decreased the levels of total and active transforming growth factor-beta secreted by these cells. Using additional r-apo(a) variants corresponding to deletions and/or site-directed mutants of various kringle domains in the molecule, we were able to determine that the observed effects of full-length r-apo(a) on HUVECs were dependent on the presence of a functional lysine-binding site(s) in the apo(a) molecule. With respect to signalling events elicited by apo(a) in HUVECs, we found that 17K treatment of the cells increased the phosphorylation level of FAK (focal adhesion kinase) and MAPKs (mitogen-activated protein kinases), including ERK (extracellular-signal-regulated kinase), p38 and JNK (c-Jun N-terminal kinase). In addition, we showed that LM609, the function-blocking antibody to integrin alphaVbeta3, abrogated the effects of 17K r-apo(a) and Lp(a) on HUVECs. Taken together, the results of the present study suggest that the apo(a) component of Lp(a) signals through integrin alphaVbeta3 to activate endothelial cells.  相似文献   

6.
Lipoprotein(a) [Lp(a)], but not low-density lipoprotein (LDL), was previously shown to impair the generation of fibrin-bound plasmin [Rouy et al. (1991) Arterioscler. Thromb. 11, 629-638] by a mechanism involving binding of Lp(a) to fibrin. It was therefore suggested that the binding was mediated by apolipoprotein(a) [apo(a)], a glycoprotein absent from LDL which has a high degree of homology with plasminogen, the precursor of the fibrinolytic enzyme plasmin. Here we have evaluated this hypothesis by performing comparative fibrin binding studies using a recombinant form of apo(a) containing 17 copies of the apo(a) domain resembling kringle 4 of plasminogen, native Lp(a), and Glu-plasminogen (Glu1-Asn791). Attempts were also made to identify the kringle domains involved in such interactions using isolated elastase-derived plasminogen fragments. The binding experiments were performed using a well-characterized model of an intact and of a plasmin-digested fibrin surface as described by Fleury and Anglés-Cano [(1991) Biochemistry 30, 7630-7638]. Binding of r-apo(a) to the fibrin surfaces was of high affinity (Kd = 26 +/- 8.4 nM for intact fibrin and 7.7 +/- 4.6 nM for plasmin-degraded fibrin) and obeyed the Langmuir equation for adsorption at interfaces. The binding to both surfaces was inhibited by the lysine analogue AMCHA and was completely abolished upon treatment of the degraded surface with carboxypeptidase B, indicating that r-apo(a) binds to both the intrachain lysines of intact fibrin and the carboxy-terminal lysines of degraded fibrin. As expected from these results, both r-apo(a) and native Lp(a) inhibited the binding of Glu-plasminogen to the fibrin surfaces.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Oxidized phospholipids (OxPLs) are present on apolipoprotein (a) [apo(a)] and lipoprotein (a) [Lp(a)] but the determinants influencing their binding are not known. The presence of OxPLs on apo(a)/Lp(a) was evaluated in plasma from healthy humans, apes, monkeys, apo(a)/Lp(a) transgenic mice, lysine binding site (LBS) mutant apo(a)/Lp(a) mice with Asp55/57→Ala55/57 substitution of kringle (K)IV10)], and a variety of recombinant apo(a) [r-apo(a)] constructs. Using antibody E06, which binds the phosphocholine (PC) headgroup of OxPLs, Western and ELISA formats revealed that OxPLs were only present in apo(a) with an intact KIV10 LBS. Lipid extracts of purified human Lp(a) contained both E06- and nonE06-detectable OxPLs by tandem liquid chromatography-mass spectrometry (LC-MS/MS). Trypsin digestion of 17K r-apo(a) showed PC-containing OxPLs covalently bound to apo(a) fragments by LC-MS/MS that could be saponified by ammonium hydroxide. Interestingly, PC-containing OxPLs were also present in 17K r-apo(a) with Asp57→Ala57 substitution in KIV10 that lacked E06 immunoreactivity. In conclusion, E06- and nonE06-detectable OxPLs are present in the lipid phase of Lp(a) and covalently bound to apo(a). E06 immunoreactivity, reflecting pro-inflammatory OxPLs accessible to the immune system, is strongly influenced by KIV10 LBS and is unique to human apo(a), which may explain Lp(a)’s pro-atherogenic potential.  相似文献   

8.
Apo(a), the distinguishing protein component of lipoprotein(a) [Lp(a)], exhibits sequence similarity to plasminogen and can inhibit binding of plasminogen to cell surfaces. Plasmin generated on the surface of vascular cells plays a role in cell migration and proliferation, two of the fibroproliferative inflammatory events that underlie atherosclerosis. The ability of apo(a) to inhibit pericellular plasminogen activation on vascular cells was therefore evaluated. Two isoforms of apo(a), 12K and 17K, were found to significantly decrease tissue-type plasminogen activator-mediated plasminogen activation on human umbilical vein endothelial cells (HUVECs) and THP-1 monocytes and macrophages. Lp(a) purified from human plasma decreased plasminogen activation on THP-1 monocytes and HUVECs but not on THP-1 macrophages. Removal of kringle V or the strong lysine binding site in kringle IV10 completely abolished the inhibitory effect of apo(a). Treatment with carboxypeptidase B to assess the roles of carboxyl-terminal lysines in cellular receptors leads in most cases to decreases in plasminogen activation as well as plasminogen and apo(a) binding; however, inhibition of plasminogen activation by apo(a) was unaffected. Our findings directly demonstrate that apo(a) inhibits pericellular plasminogen activation in all three cell types, although binding of apo(a) to cell-surface receptors containing carboxyl-terminal lysines does not appear to play a major role in the inhibition mechanism.  相似文献   

9.
Plasminogen and plasminogen activators play important roles in liver regeneration. Previously, we found that plasminogen potentiates hepatocyte proliferation in the primary culture of rat hepatocytes. Here, we examined how exogenous plasminogen affects the downstream events leading to cell proliferation. The addition of plasminogen to hepatocytes increased urokinase-type plasminogen activator (uPA) activity, but did not affect matrix metalloproteinase (MMP)-9 or MMP-2 activities. To increase uPA activity, plasminogen was required to bind the hepatocyte surface through the lysine-binding site of plasminogen molecule, but neither uPA mRNA nor uPA receptor (uPAR) mRNA was affected by the exogenous plasminogen. In addition, treatment of hepatocytes with an uPA inhibitor, p-aminobenzamidine, inhibited the plasminogen-induced and even EGF-induced hepatocyte proliferation. These results suggest that plasminogen-related control of hepatocyte proliferation is exerted topically by producing a hyperfibrinolytic state on the cellular surface involving the activation of uPA.  相似文献   

10.
Novel properties of human monocyte plasminogen activator   总被引:2,自引:0,他引:2  
Human peripheral monocytes stimulated by either muramyl dipeptide [N-acetyl-muramoyl-L-alanyl-D-isoglutamine], bacterial lipopolysaccharide or lymphokine-containing supernatants of human lymphocytes, could be shown to produce and secrete appreciable activities of a 52 000-Mr plasminogen activator. This enzyme was suppressed in control and stimulated cultures by dexamethasone (0.1 microM). Monocyte plasminogen activator could only be assayed under conditions of low ionic strength and had no detectable activity at 0.15 M NaCl. Intracellular enzyme was present as a proenzyme, requiring activation by preincubation with plasminogen containing traces of plasmin, before its activity could be seen on sodium dodecyl sulphate/polyacrylamide gel electrophoresis by a fibrin overlay method. Secreted enzyme was in the active form. Further incubation of lysate or supernatant plasminogen activator with plasminogen did not produce any active enzyme species of Mr 36 000, unlike incubations of urokinase with plasminogen. Moreover, comparisons with other plasminogen activators of Mr 52 000 from transformed cell lines showed that the monocyte activator was unique in its resistance to monocyte minactivin, a specific inactivator of urokinase-type plasminogen activators, and in its sensitivity to human alpha 2-macroglobulin. It was therefore concluded that human monocyte plasminogen activator, although sharing an Mr of 52 000 in common with other such activators, is not identical to the high Mr form of urokinase or the plasminogen activators of transformed cells. On present evidence it is the least likely of these enzymes to be active extracellularly under normal physiological conditions.  相似文献   

11.
Several pathogenic bacteria secrete plasminogen activator proteins. Streptokinase (SKe) produced by Streptococcus equisimilis and staphylokinase secreted from Staphylococcus aureus are human plasminogen activators and streptokinase (SKu), produced by Streptococcus uberis, is a bovine plasminogen activator. Thus, the fusion proteins among these activators can explain the function of each domain of SKe. Replacement of the SKalpha domain with staphylokinase donated the staphylokinase-like activation activity to SKe, and the SKbetagamma domain played a role of nonproteolytic activation of plasminogen. Recombinant SKu also activated human plasminogen by staphylokinase-like activation mode. Because SKu has homology with SKe, the bovine plasminogen activation activities of SKe fragments were checked. SKebetagamma among them had activation activity with bovine plasminogen. This means that the C-terminal domain (gamma-domain) of streptokinase determines plasminogen species necessary for activation and converses the ability of substrate recognition to human species.  相似文献   

12.
Lipoprotein(a) [Lp(a)] entrapment by vascular extracellular matrix may be important in atherogenesis. We sought to determine whether laminin, a major component of the basal membrane, may contribute to Lp(a) retention in the arterial wall. First, immunohistochemistry experiments were performed to examine the relative distribution of Lp(a) and laminin in human carotid artery specimens. There was a high degree of co-localization of Lp(a) and laminin in atherosclerotic specimens, but not in non-atherosclerotic sections. We then studied the binding interaction between Lp(a) and laminin in vitro. ELISA experiments showed that native Lp(a) particles and 17K and 12K recombinant apolipoprotein(a) [r-apo(a)] variants interacted strongly with laminin whereas LDL, apoB-100, and the truncated KIV(6-P), KIV(8-P), and KIV(9-P) r-apo(a) variants did not. Overall, the ELISA data demonstrated that Lp(a) binding to laminin is mediated by apo(a) and a combination of the lysine analogue epsilon-aminocaproic acid and salt effectively decreases apo(a) binding to laminin. Secondary binding analyses with 125I-labeled r-apo(a) revealed equilibrium dissociation constants (K(d)) of 180 and 360 nM for the 17K and 12K variants binding to laminin, respectively. Such similar K(d) values between these two r-apo(a) variants suggest that isoform size does not appear to influence apo(a) binding to laminin. In summary, our data suggest that laminin may bind to apo(a) in the atherosclerotic intima, thus contributing to the selective retention of Lp(a) in this milieu.  相似文献   

13.
Elevated levels of lipoprotein(a) [Lp(a)] are associated with an increased risk of atherothrombotic disease, but the mechanism(s) by which Lp(a) potentiates atherogenesis is unknown. The extensive homology of apolipoprotein(a) [apo(a)] to plasminogen has led us and others to postulate that Lp(a) may impair fibrinolysis. We have previously shown that Lp(a) inhibits fibrin stimulation of plasminogen activation by tissue-type plasminogen activator (t-PA); however, we and other investigators have been unable to demonstrate direct inhibition of t-PA by Lp(a) in solution. We now report that t-PA binds reversibly and saturably to surface-bound Lp(a) and to low-density lipoprotein (LDL) and that as a result of this binding activation of plasminogen by t-PA is inhibited. The catalytic efficiency (kcat/Km) of t-PA when bound to polystyrene surface-bound fibrinogen increased 2.9-fold compared to t-PA bound to control wells. When bound to surface-bound Lp(a), however, the catalytic efficiency of t-PA was reduced 9.5-fold compared to t-PA bound to control wells; likewise, by binding to surface-bound LDL, the catalytic efficiency of t-PA was reduced 16-fold compared to the control. Studies with defined monoclonal antibodies suggest that major determinants of t-PA binding are its active site, the LDL receptor binding domain of apolipoprotein B-100 (apoB-100), and apo(a). These data suggest a unique mechanism by which Lp(a) and LDL incorporated in an atheroma can inhibit endogenous fibrinolysis and thereby contribute to the genesis of atherothrombotic disease.  相似文献   

14.
Lipoprotein(a) [Lp(a)] is a low-density lipoprotein complex consisting of apolipoprotein(a) [apo(a)] disulfide-linked to apolipoprotein B-100. Lp(a) has been implicated in atherogenesis and thrombosis through the lysine binding site (LBS) affinity of its kringle domains. We have examined the oxidative effect of 2,2'-azobis-(amidinopropane) HCl (AAPH), a mild hydrophilic free radical initiator, upon the ability of Lp(a) and recombinant apo(a), r-apo(a), to bind through their LBS domains. AAPH treatment caused a time-dependent decrease in the number of functional Lp(a) or r-apo(a) molecules capable of binding to fibrin or lysine-Sepharose and in the intrinsic protein fluorescence of both Lp(a) and r-apo(a). The presence of a lysine analogue during the reaction prevented the loss of lysine binding and provided a partial protection from the loss of tryptophan fluorescence. The partial protection of fluorescence by lysine analogues was observed in other kringle-containing proteins, but not in proteins lacking kringles. No significant aggregation, fragmentation, or change in conformation of Lp(a) or r-apo(a) was observed as assessed by native or SDS-PAGE, light scattering, retention of antigenicity, and protein fluorescence emission spectra. Our results suggest that AAPH destroys amino acids in the kringles of apo(a) that are essential for lysine binding, including one or more tryptophan residues. The present study, therefore, raises the possibility that the biological roles of Lp(a) may be mediated by its state of oxidation, especially in light of our previous study showing that the reductive properties of sulfhydryl-containing compounds increase the LBS affinity of Lp(a) for fibrin.  相似文献   

15.
Mutational and immunochemical analysis of plasminogen activator inhibitor 1   总被引:1,自引:0,他引:1  
We have undertaken a structural and functional analysis of recombinant plasminogen activator inhibitor type 1 (PAI-1) produced in Escherichia coli using site-directed mutagenesis and immunochemistry. Expression of recombinant PAI-1 yielded an inhibitor that was functionally indistinguishable from PAI-1 made in human endothelial cells. Mutations in both the reactive center P1 and P1' residues (Arg-Met) and a putative secondary binding site for plasminogen activators on PAI-1 have been engineered to assess their functional effects. The inhibition of a panel of serine proteases, including plasminogen activators, trypsin, elastase, and thrombin, has been studied. Substitution of the P1 arginine residue with lysine or the P1' residue with either valine or serine had no detectable effect on the rate of inhibition of plasminogen activators. However, replacement of both P1 and P1' by Met-Ser produced a variant with no detectable plasminogen activator inhibitor activity. Mutations introduced into either Asp102 or Lys104 in the second site did not affect the rate of inhibition of plasminogen activators. Complementary immunochemical experiments using antibodies directed against the same two regions of the PAI-1 protein confirm that the reactive center is the primary determinant of inhibitory activity and that the putative second site is not a necessary functional region.  相似文献   

16.
Phorbol myristate acetate (PMA) added to human synovial fibroblast cultures caused a dose-dependent increase in the production of plasminogen activator inhibitor-type 1 (PAI-1). In addition, PMA inhibited endogenous and interleukin-1 (IL-1) induced plasminogen activator (PA) activity, while increasing mRNA PAI-1 levels. Other protein kinase C (PKC) activators, mezerein and teleocidin B4, caused similar effects. The simultaneous addition of the PKC antagonists, H-7 or staurosporine, prevented the inhibition of PA activity by PMA. This study shows that activation of PKC inhibits PA and stimulates PAI production in human synovial fibroblasts. These results suggest that activation of PKC may play an important role in regulating increased PA production associated with joint destruction in rheumatoid arthritis (RA).  相似文献   

17.
Activation of human Glu-plasminogen, Lys-plasminogen and low-Mr plasminogen (lacking lysine-binding sites) by pro-urokinase (pro-UK), obtained from a human lung adenocarcinoma cell line (Calu-3, ATCC), obeys Michaelis-Menten kinetics. Activation occurs with a comparable affinity (Km 0.40-0.77 microM), while the catalytic rate constant (kcat) is comparable for Glu-plasminogen (0.0022s-1) and low-Mr plasminogen (0.0034 s-1), but is somewhat higher for Lys-plasminogen (0.0106 s-1). The rate of activation of plasminogen by pro-UK is not significantly influenced by the presence of 6-aminohexanoic acid, purified fragments LBS I or LBS II or histidine-rich glycoprotein, indicating that the high affinity of pro-UK for plasminogen is not mediated via the high-affinity lysine-binding site of plasminogen located in kringles 1-3 (LBS I) nor via the low-affinity lysine-binding site comprised within kringle 4 (LBS II). The site(s) in plasminogen involved in the high-affinity interaction with pro-UK thus appear to be located within the low-Mr plasminogen moiety.  相似文献   

18.
The endothelium may contribute to fibrinolysis through the binding of plasminogen activators or plasminogen activator inhibitors to the cell surface. Using a solid-phase radioimmunoassay, we observed that antibodies to recombinant tissue-type plasminogen activator (rt-PA) and plasminogen activator inhibitor type 1 (PAI-1) bound to the surface of cultured human umbilical vein endothelial cells (HUVEC). HUVEC also specifically bound added radiolabeled rt-PA with apparent steady-state binding being reached by 1 h at 4 degrees C. When added at low concentrations (less than 5 nM), rt-PA bound with high affinity mainly via the catalytic site, forming a sodium dodecyl sulfate-stable 105-kDa complex which dissociates from the cell surface over time and which could be immunoprecipitated by a monoclonal antibody to PAI-1. rt-PA bound to this high affinity site retained less than 5% of its expected plasminogen activator activity. At higher concentrations, binding did not require the catalytic site and was rapidly reversible. rt-PA initially bound to this site retained plasminogen activator activity. These studies suggest that tissue-type plasminogen activator and PAI-1 are expressed on the surface of cultured HUVEC. HUVEC also express unoccupied binding sites for exogenous tissue-type plasminogen activator. The balance between the expression of plasminogen activator inhibitors and these unoccupied binding sites for plasminogen activators on the endothelial surface may contribute to the regulation of fibrinolysis.  相似文献   

19.
Mechanisms of plasminogen activation by mammalian plasminogen activators   总被引:4,自引:0,他引:4  
H R Lijnen  D Collen 《Enzyme》1988,40(2-3):90-96
Plasminogen activators convert the proenzyme plasminogen to the active serine protease plasmin by hydrolysis of the Arg560-Val561 peptide bond. Physiological plasminogen activation is however regulated by several additional molecular interactions resulting in fibrin-specific clot lysis. Tissue-type plasminogen activator (t-PA) binds to fibrin and thereby acquires a high affinity for plasminogen, resulting in efficient plasmin generation at the fibrin surface. Single-chain urokinase-type plasminogen activator (scu-PA) activates plasminogen directly but with a catalytic efficiency which is about 20 times lower than that of urokinase. In plasma, however, it is inactive in the absence of fibrin. Chimeric plasminogen activators consisting of the NH2-terminal region of t-PA (containing the fibrin-binding domains) and the COOH-terminal region of scu-PA (containing the active site), combine the mechanisms of fibrin specificity of both plasminogen activators. Combination of t-PA and scu-PA infusion in animal models of thrombosis and in patients with coronary artery thrombosis results in a synergic effect on thrombolysis, allowing a reduction of the therapeutic dose and elimination of side effects on the hemostatic system.  相似文献   

20.
Similarity between the apolipoprotein(a) (apo(a)) moiety of lipoprotein(a) (Lp(a)) and plasminogen suggests a potentially important link between atherosclerosis and thrombosis. Lp(a) may interfere with tissue plasminogen activator (tPA)-mediated plasminogen activation in fibrinolysis, thereby generating a hypercoagulable state in vivo. A fluorescence-based system was employed to study the effect of apo(a) on plasminogen activation in the presence of native fibrin and degraded fibrin cofactors and in the absence of positive feedback reactions catalyzed by plasmin. Human Lp(a) and a physiologically relevant, 17-kringle recombinant apo(a) species exhibited strong inhibition with both cofactors. A variant lacking the protease domain also exhibited strong inhibition, indicating that the apo(a)-plasminogen binding interaction mediated by the apo(a) protease domain does not ultimately inhibit plasminogen activation. A variant in which the strong lysine-binding site in kringle IV type 10 had been abolished exhibited substantially reduced inhibition whereas another lacking the kringle V domain showed no inhibition. Amino-terminal truncation mutants of apo(a) also revealed that additional sequences within kringle IV types 1-4 are required for maximal inhibition. To investigate the inhibition mechanism, the concentrations of plasminogen, cofactor, and a 12-kringle recombinant apo(a) species were systematically varied. Kinetics for both cofactors conformed to a single, equilibrium template model in which apo(a) can interact with all three fibrinolytic components and predicts the formation of ternary (cofactor, tPA, and plasminogen) and quaternary (cofactor, tPA, plasminogen, and apo(a)) catalytic complexes. The latter complex exhibits a reduced turnover number, thereby accounting for inhibition of plasminogen activation in the presence of apo(a)/Lp(a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号