首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Assembly and regulation of telomerase.   总被引:3,自引:0,他引:3  
  相似文献   

2.
3.
4.
Normally, cell division leads to shortening of telomeres, the nucleoprotein complexes located at the ends of linear chromosomes. When telomeres reach a critically short length, cells cease to divide. However, immortal tumor cells display stable telomere lengths and are able to maintain their proliferative state. Wong and colleagues have found that telomerase is sequestered by nucleoli during certain stages of the cell cycle, decreasing the likelihood of telomerase access to chromatin until the late S phase. Additionally, they demonstrate that ionizing radiation tends to keep telomerase sequestered in nucleoli, whereas cell transformation leads to telomerase translocation into the nucleoplasm, where, presumably, it can catalyze the lengthening of telomeres at appropriate and inappropriate sites. The sequestration of telomerase thus imposes a newly identified level of regulation on telomerase activity, implicating telomerase localization as a potentially useful target for pharmacotherapy.  相似文献   

5.
Human telomerase and its regulation.   总被引:38,自引:0,他引:38  
  相似文献   

6.
7.
8.
In bakers' yeast, in vivo telomerase activity requires a ribonucleoprotein (RNP) complex with at least four associated proteins (Est2p, Est1p, Est3p, and Cdc13p) and one RNA species (Tlc1). The function of telomerase in maintaining chromosome ends, called telomeres, is tightly regulated and linked to the cell cycle. However, the mechanisms that regulate the expression of individual components of telomerase are poorly understood. Here we report that yeast RNase III (Rnt1p), a double-stranded RNA-specific endoribonuclease, regulates the expression of telomerase subunits and is required for maintaining normal telomere length. Deletion or inactivation of RNT1 induced the expression of Est1, Est2, Est3, and Tlc1 RNAs and increased telomerase activity, leading to elongation of telomeric repeat tracts. In silico analysis of the different RNAs coding for the telomerase subunits revealed a canonical Rnt1p cleavage site near the 3' end of Est1 mRNA. This predicted structure was cleaved by Rnt1p and its disruption abolished cleavage in vitro. Mutation of the Rnt1p cleavage signal in vivo impaired the cell cycle-dependent degradation of Est1 mRNA without affecting its steady-state level. These results reveal a new mechanism that influences telomeres length by controlling the expression of the telomerase subunits.  相似文献   

9.
10.
11.
12.
13.
Fu D  Collins K 《Molecular cell》2007,28(5):773-785
The identities and roles of proteins associated with human telomerase remain poorly defined. To gain insight, we undertook an affinity purification of endogenously assembled human telomerase complexes. We show that specific subsets of H/ACA, Sm, and hnRNP proteins associate with active and inactive telomerase RNPs, while two NTPase proteins associate preferentially with active enzyme. All three core H/ACA-motif binding proteins are telomerase holoenzyme components essential for RNP accumulation. On the other hand, telomerase RNPs lacking interaction with Sm proteins or hnRNP C remain fully functional for telomere elongation. Curiously, overexpression of either associated hnRNP protein (hnRNP C and hnRNP U) or either NTPase protein (NAT10 and GNL3L) induced telomere shortening. Our findings suggest that endogenous human telomerase complexes are more heterogeneous than those of single-celled eukaryotes, have predominantly shared rather than telomerase-specific proteins, and make numerous regulatory interactions.  相似文献   

14.
15.
The heterodimeric Ku complex affects telomere structure in diverse organisms. We report here that in the absence of Ku, the catalytic subunit of telomerase, Est2p, was not telomere-associated in G1 phase, and its association in late S phase was decreased. The telomere association of Est1p, a telomerase component that binds telomeres only in late S phase, was also reduced in the absence of Ku. The effects of Ku on telomerase binding require a 48-nucleotide (nt) stem-loop region of TLC1 telomerase RNA. Ku interacts with TLC1 RNA via this 48-nt region throughout the cell cycle, but this interaction was reduced after telomere replication. These data support a model in which Ku recruits telomerase to telomeres in G1 phase when telomerase is inactive and promotes telomerase-mediated telomere lengthening in late S phase.  相似文献   

16.
Bianchi A  Shore D 《Molecular cell》2008,31(2):153-165
The telomerase enzyme, which synthesizes telomeric DNA repeats, is regulated in cis at individual chromosome ends by the telomeric protein/DNA complex in a manner dependent on telomere repeat-array length. A dynamic interplay between telomerase-inhibiting factors bound at duplex DNA repeats and telomerase-promoting ones bound at single-stranded terminal DNA overhangs appears to modulate telomerase activity and to be directly related to the transient deprotection of telomeres. We discuss recent advances on the mechanism of telomerase regulation at chromosome ends in both yeast and mammalian systems.  相似文献   

17.
18.
19.
Pharmacoresistant schizophrenia is a significant impediment to the successful management of the disease. The expression and function of P-glycoprotein (P-gp) has recently been implicated in this phenomenon. P-gp is a multidrug efflux transporter that prevents drug substrates from crossing the blood-brain barrier (BBB). Although the direct interaction between individual antipsychotic agents and P-gp has been demonstrated, the effect of antipsychotic drug combinations used in disease management on P-gp transport function remains to be elucidated. This could have important clinical implications in some individuals as dosage adjustments based on plasma drug concentration changes may not always be appropriate if drug-drug interactions and the resulting changes in drug concentration in the brain are not considered. This paper introduces the potential impact that combination antipsychotic therapy may have on P-gp function at the BBB and discusses the consequences of this in the prevention and circumvention of unfavourable therapeutic response in schizophrenic disorders.  相似文献   

20.
Physiological and pharmacological evidence for the regulation of permeability   总被引:12,自引:0,他引:12  
Local intraarterial infusions of histamine-type mediators produce increases in microvascular pressure (Pmv), protein efflux, and net fluid filtration that promote edema formation. The rise in Pmv is not the primary determinant of edema formation inasmuch as mediator-stimulated edema formation develops without an increase in Pmv. The inflammatory mediators increase the hydraulic conductivity of the microvascular membrane as evidenced by a large increase in the capillary filtration coefficient (CFC) subsequent to an increase in permeability. The development of inflammatory edema is primarily attributable to the increase in protein efflux, which decreases the lymph-to-plasma total-protein ratio (L/P ratio), virtually eliminating the transmural colloid osmotic pressure gradient. Hence, fluid filtration is increased at almost any level of Pmv. Noninflammatory vasodilators and venous occlusion produce increases in Pmv and protein clearance, but fail to increase the L/P ratio. The increase in protein efflux and L/P ratio is attributable to a nonhemodynamic action of the inflammatory mediators, an increase in microvascular permeability to macromolecules. The increase in protein efflux, CFC, and net fluid filtration produced by various inflammatory mediators is largely inhibited by cooling, treatment with endothelial cell stabilizers, or perfusion with blood from hemorrhaged animals. This inhibition is independent of changes in hemodynamics and must be ascribed to a direct effect on the microvascular membrane, providing evidence for a variable macromolecular transport pathway. In contrast, increases in protein clearance produced by increasing Pmv are not inhibited by these maneuvers, which provides evidence for a static macromolecular transport pathway. These findings correlate well with those from microscopic studies supporting the concept that macromolecular permeability may be directly regulated at the level of the venular endothelial cell subsequent to the modulation of interendothelial cell junction gap size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号