首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and malic enzyme are enzymes involved in NADPH synthesis. Their specific activities and glucose utilization by isolated cell systems have been measured in adipose tissue and mammary gland from mid-lactating rats during starvation/refeeding transition. Starvation for 24 h produced a 75-90% decrease in the specific activities of these NADPH producing systems in mammary gland. Acinis isolated from the gland of starved rats had a lower production of CO2, fatty acids and triacylglycerols from (1-14C)glucose and (6-14C)-glucose than did gland from control rats. The activities of these enzymes in adipose tissue were very low and did not undergo any measurable alteration with starvation. The ability of adipocytes from well fed lactating rats to synthesize fatty acids from (1-14C)glucose was completely blocked. However, starvation is accompanied by a marked decrease in glucose incorporation into triacylglycerols. All the variations observed "in vivo" and "in vitro" in mammary gland returned almost to normal values by refeeding the starved lactating rats.  相似文献   

2.
用成熟脂肪建立一种新的猪前体脂肪细胞培养模型   总被引:1,自引:0,他引:1  
用去分化的成熟脂肪细胞建立一种新的具有再增殖和再分化能力的猪前体脂肪细胞模型. 用“天花板” 培养法分离、培养1~3日龄仔猪皮下成熟脂肪细胞, 显微镜下观察细胞形态变化并计数, 流式细胞术检测细胞周期;油红O染色法检测脂肪细胞分化率, RT-PCR分析前体脂肪细胞标志基因Pref-1及成熟脂肪细胞关键转录因子PPARγ和C/EBPα等mRNA表达情况. 发现刚贴壁的细胞为单室脂滴成熟脂肪细胞, 油红O染色完全阳性; 14d后这种成熟脂肪细胞完全去分化为无脂滴的纤维状细胞, 并表达前体脂肪细胞标志基因Pref-1, 油红O染色阴性. 这种去分化的前体脂肪细胞在成脂诱导剂作用下,可重新分化为成熟的脂肪细胞. 结果证实,成熟脂肪细胞去分化后的前体脂肪细胞可重新增殖、分化为成熟脂肪细胞, 是一种新的有效的前体脂肪细胞模型.  相似文献   

3.
The high-protein content of formula offered to low-birth weight babies is suspected to increase the risk of obesity later in life. This study assesses the immediate and subsequent effects of a protein intake in excess during suckling on hormonal and metabolic status and adipose tissue features in a porcine model of intrauterine growth restriction. Piglets were fed milk replacers formulated to provide an adequate (AP) or a high (HP) protein supply from day 2 to day 28. A subset of piglets was killed at day 28. After weaning, the remaining piglets had free access to the same solid high-fat diet until day 160. From day 2 to day 28, HP piglets had a greater daily weight gain (P < 0.05). Relative weight of perirenal adipose tissue (PAT), adipocyte mean diameters, activities of lipogenic enzymes in PAT and subcutaneous adipose tissue (SCAT), and leptinemia were lower (P < 0.05) in HP piglets than in AP piglets. Genes related to glucose utilization and lipid anabolism in PAT and SCAT were (P < 0.05) or tended (P < 0.1) to be downregulated in HP piglets. At day 160, adipocytes were enlarged, whereas lipogenic rates in adipocytes were reduced (P < 0.05) in SCAT of HP compared with AP pigs. Percent body fat, mRNA levels of genes controlling lipid metabolism, and plasma concentrations of hormones and metabolites were similar in HP and AP pigs. In conclusion, a HP neonatal formula induced a temporary reduction of adiposity and changed adipocyte physiology at peripubertal age.  相似文献   

4.
5.
Lipoprotein lipase activity was higher in fat-pad pieces than in isolated adipocytes from the same fed rats, whereas hydrolysis of triacylglycerols from triacylglycerol-rich lipoproteins was similar in the two preparations when incubated either in basal conditions or in the presence of heparin. In both preparations there was a similar release of lipoprotein lipase activity into the medium during basal incubation, enhanced by the presence of heparin. In fat-pad pieces, but not in isolated adipocytes, incubation with heparin produced a decrease in the lipoprotein lipase activity measured in the tissue preparation. In fat-pad pieces from 24 h-starved rats, lipoprotein lipase activity was the same as in isolated adipocytes from the same animals and incubation with heparin did not affect the appearance of lipoprotein lipase in the medium or the utilization of triacylglycerols from triacylglycerol-rich lipoproteins. These results support the following conclusions. (1) The effectiveness of lipoprotein lipase in adipose tissue preparations in vitro depends more on its availability to the substrate than on its total activity. (2) Heparin acts on adipose tissue preparations from fed animals both by enhancing the release of pre-existing extracellular enzyme (which is absent in isolated adipocytes) and by enhancing the transfer outside the cells of the intracellular (and mainly undetectable) enzyme that is activated in the secretion process. (3) In adipose tissue from starved animals there is not only a decrease in the active extracellular form of lipoprotein lipase activity but also a reduction in the intracellular (and mainly undetectable) pool of the enzyme.  相似文献   

6.
In the lamb, the uncoupling protein-1 (UCP1) content of perirenal adipose tissue at birth is an important factor in heat production by non-shivering thermogenesis and the prevention of hypothermia. This study examines UCP1 gene expression and protein content in perirenal adipose tissue over the first 15 days of life by in situ hybridisation and immunohistochemistry. UCP1 mRNA was detected at birth in 30% of adipocytes, and in approximately 24% of fat cells at 2 days of life. However, by 5 days of age and thereafter UCP1 mRNA was undetectable. Immunoreactive UCP1 was present in all adipocytes at birth and at 2 days of age, and remained detectable in a decreasing proportion of cells until day 10 of life. By 15 days of age no immunoreactive UCP1 was detected and the perirenal adipose tissue had the appearance of white fat. It is concluded that UCP1 gene expression is suppressed in most adipocytes in perirenal adipose tissue of newborn lambs, and gene expression rapidly falls in the remaining adipocytes over the first 5 days of postnatal life. In contrast, immunoreactive UCP1, a characteristic of brown adipose tissue, was present in many adipocytes for up to 10 days of age, suggesting that UCP1 has a long half-life in lambs. All adipocytes in perirenal adipose tissue of newborn lambs appear to be functionally brown, but over the first 2 weeks of postnatal life there is a complete transformation to white adipocytes.  相似文献   

7.
Triglyceride-rich lipoproteins from adult rat plasma were labelled in vivo with 3H in the esterified fatty acids and 14C in the labelled glyceride glycerol of neutral lipids by injecting i.v. sodium 9-10 (n)-[3H] palmitate and [U-14C] glycerol, after which the prelabelled lipoproteins were purified by ultracentrifugation and dialysis. The lipoproteins were incubated in vitro, in the presence or not of heparin, with pieces of epididymal fat pads or isolated adipocytes from fed rats. The disappearance of both [3H]- and [14C] lipids from the media was greater when incubations were performed with adipocytes than with fat-pad pieces and it increased with heparin in both preparations. More 3H-label than 14C was found in the tissue lipids, a higher percentage being present in adipocytes than in fat-pad pieces, and the amount of label in tissue lipids was always enhanced by heparin. Some 14C-label appeared as esterified fatty acids in both tissue preparations and it also was enhanced by the presence of heparin. These findings are in agreement with the recognized influence of heparin on the release of lipoprotein lipase and show the direct relationship between heparin action and tissue ability to take up products of lipoprotein triglyceride breakdown. They also demonstrate the ability of adipose tissue to metabolize glycerol coming from the hydrolysis of lipoprotein glycerides.  相似文献   

8.
The ultrastructural characteristics of the inguinal, interscapular, and perirenal adipose tissue in kittens and cats were studied. There were no qualitative differences among adipocytes in the three anatomical areas. The only recorded difference was in the amount of lipids stored in the adipocytes in younger stages. Immediately after birth lipids occupied 25% of the volume in the inguinal area, 15% in interscapular fat tissue, and 10% in perirenal fat tissue. At this stage the adipose tissue morphologically resembled brown adipose tissue (BAT) of rodents. Two weeks after birth, lipids accumulated and adipocytes in the inguinal area became unilocular and appeared similar to white adipose tissue (WAT). A similar transition occurred approx 25 days after birth in interscapular fat and approx 6 weeks after birth in the perirenal area. No morphological signs of any cell degradation or destruction, nor any increased activity of preadipocytes, were seen during this conversion from BAT-like to WAT-like adipose tissue. The conversion of the adipose tissue was correlated with a decrease in vascularization and innervation, a loss of intercellular connections, and a changed mitochondrial population. Mitochondria in multilocular adipocytes resembled those in typical BAT which contain uncoupling protein (“UC-mitochondria”). After conversion to unilocular adipocytes the amount of mitochondria was halved, their cristae even more reduced, and their appearance was of a WAT-type (UCP-lacking mitochondria, which are coupled under physiological conditions; “C-mitochondria”). Since this category of adipose tissue differs from both typical brown and white adipose tissue, the name “convertible adipose tissue” (CAT) is proposed. Apparently adipose tissue from comparatively large mammals is of this convertible type.  相似文献   

9.
The prevalence of obesity has reached epidemic proportions and is associated with several co-morbid conditions including diabetes, dyslipidemia, cancer, atherosclerosis and gallstones. Obesity is associated with low systemic inflammation and an accumulation of adipose tissue macrophages (ATMs) that are thought to modulate insulin resistance. ATMs may also modulate adipocyte metabolism and take up lipids released during adipocyte lipolysis and cell death. We suggest that high levels of free cholesterol residing in adipocytes are released during these processes and contribute to ATM activation and accumulation during obesity and caloric restriction. Db/db mice were studied for extent of adipose tissue inflammation under feeding conditions of ad libitum (AL) and caloric restriction (CR). The major finding was a marked elevation in epididymal adipose ABCG1 mRNA levels with obesity and CR (6-fold and 16-fold, respectively) over that seen for lean wild-type mice. ABCG1 protein was also elevated for CR as compared to AL adipose tissue. ABCG1 is likely produced by cholesterol loaded ATMs since this gene is not highly expressed in adipocytes and ABCG1 expression is sterol mediated. Our data supports the concept that metabolic changes in adipocytes due to demand lipolysis and cell death lead to cholesterol loading of ATMs. Based on finding cholesterol-loaded peritoneal leukocytes with elevated levels of ABCG1 in CR as compared to AL mice, we suggest that pathways for cholesterol trafficking out of adipose tissue involve ATM egress as well as ABCG1 mediated cholesterol efflux. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

10.
Fatty acids released from adipose triacylglycerol stores by lipolysis provide vertebrates with an important source of energy. We investigated the role of microsomal triacylglycerol hydrolase (TGH) in the mobilization of adipocyte triacylglycerols through inactivation of the TGH activity by RNA interference or chemical inhibition. Attenuation of TGH activity resulted in decreased basal but not isoproterenol-stimulated efflux of fatty acids from 3T3-L1 adipocytes. Lack of TGH activity was accompanied by accumulation of cellular triacylglycerols and cholesteryl esters without any changes in the expression of enzymes catalyzing triacylglycerol synthesis (diacylglycerol acyltransferases 1 and 2) or degradation (adipose triglyceride lipase and hormone-sensitive lipase). Inhibition of TGH-mediated lipolysis also did not affect insulin-stimulated Glut4 translocation from intracellular compartments to the plasma membrane or glucose uptake into adipocytes. These data suggest that TGH plays a role in adipose tissue triacylglycerol metabolism and may be a suitable pharmacological target for lowering fatty acid efflux from adipose tissue without altering glucose import.  相似文献   

11.
Enzymes associated with glycerolipid biosynthesis were examined in microsomal fractions of liver and adipose tissue obtained from swine of various ages. Generally, liver glycerophosphate acyltransferase, phosphatidate phosphohydrolase, diglyceride acyltransferase, and choline phosphotransferase activities were substantial at birth but increased 2- to 3-fold by day 14 postpartum, decreased at day 25, then increased at the oldest ages studied (up to 155 days postpartum). In adipose tissue, enzyme activities were low at birth and developed through day 25 in a pattern generally similar to that observed in liver. In contrast to liver, the adipose enzymes were depressed immediately postweaning (day 32) with subsequent recovery. The observed decline in adipose tissue enzyme activities expressed on a tissue basis at older ages was primarily the result of increased adipocyte size, since the activities expressed on a cell basis did not decline as rapidly. In both liver and adipose tissue, phosphatidate was the major glycerolipid synthesized by the microsomal glycerophosphate acyltransferase enzymes at all ages (generally greater than 75%). The ratio of neutral lipids to phospholipids produced by acylation of glycerophosphate was increased when a microsomal--cytosolic preparation was used as a source of enzyme in contrast to a microsomal preparation.  相似文献   

12.
The prevalence of obesity has reached epidemic proportions and is associated with several co-morbid conditions including diabetes, dyslipidemia, cancer, atherosclerosis and gallstones. Obesity is associated with low systemic inflammation and an accumulation of adipose tissue macrophages (ATMs) that are thought to modulate insulin resistance. ATMs may also modulate adipocyte metabolism and take up lipids released during adipocyte lipolysis and cell death. We suggest that high levels of free cholesterol residing in adipocytes are released during these processes and contribute to ATM activation and accumulation during obesity and caloric restriction. Db/db mice were studied for extent of adipose tissue inflammation under feeding conditions of ad libitum (AL) and caloric restriction (CR). The major finding was a marked elevation in epididymal adipose ABCG1 mRNA levels with obesity and CR (6-fold and 16-fold, respectively) over that seen for lean wild-type mice. ABCG1 protein was also elevated for CR as compared to AL adipose tissue. ABCG1 is likely produced by cholesterol loaded ATMs since this gene is not highly expressed in adipocytes and ABCG1 expression is sterol mediated. Our data supports the concept that metabolic changes in adipocytes due to demand lipolysis and cell death lead to cholesterol loading of ATMs. Based on finding cholesterol-loaded peritoneal leukocytes with elevated levels of ABCG1 in CR as compared to AL mice, we suggest that pathways for cholesterol trafficking out of adipose tissue involve ATM egress as well as ABCG1 mediated cholesterol efflux. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

13.
The flow rate of serum free fatty acids (FFA) into the lipids of brown adipose tissue (BAT) of newborn rabbits was determined by intravenous injection of [14C]-1-palmitate. For a normal 7 day old animal during acute cold exposure the flow rate is (1 hour in 20 degrees C ambient temperature) 0.209 mumol/minute, that is 3.6% of the serum FFA turnover. Prolonged cold exposure only induced an increase in FFA influx if the lipid depot had been depleted (48 hours starvation in 20 degrees C). Consequently, the BAT takes up serum FFA for heat production only after mobilisation of its lipid stores. It is supposed that the mechanism of the uptake of serum FFA by the BAT is connected with their esterification to triglycerides. The phospholipids of BAT which are not only membrane bound lipids are characterized by a high metabolism.  相似文献   

14.
Adipocytes anatomically associated with lymph nodes (and omental milky spots) have many special properties including fatty acid composition and the control of lipolysis that equip them to interact locally with lymphoid cells. Lymph node lymphocytes and tissue dendritic cells acquire their fatty acids from the contiguous adipocytes. Lymph node-derived dendritic cells suppress lipolysis in perinodal adipocytes but those that permeate the adipose tissue stimulate lipolysis, especially after minor, local immune stimulation. Inflammation alters the composition of fatty acids incorporated into dendritic cells, and that of node-containing adipose tissue, counteracting the effects of dietary lipids. Thus these specialised adipocytes partially emancipate the immune system from fluctuations in the abundance and composition of dietary lipids. Prolonged, low-level immune stimulation induces the local formation of more adipocytes, especially adjacent to the inflamed lymph node. This mechanism may contribute to hypertrophy of the mesentery and omentum in chronic inflammatory diseases such as HIV-infection, and in smokers. Paracrine interactions between adipose and lymphoid tissues are enhanced by diets rich in n-6 fatty acids and attentuated by fish oils. The latter improve immune function and body conformation in animals and people. The partitioning of adipose tissue in many depots, some specialised for local, paracrine interactions with other tissues, is a fundamental feature of mammals.  相似文献   

15.
Summary Ability to express uncoupling protein (UCP) and establish UCP-dependent thermogenesis was analyzed in anatomical areas of mice that are generally considered to be white adipose tissue: mesenterial, perimetral, epididymal, inguinal, and superficial layer of interscapular white adipose tissue. The mice were acclimatized for 1 week to 4° C; the following week they were exposed to cold stress (1 h at-20° C, 2–3 times daily). In such conditions in inguinal adipose tissue, slot-blot analysis detected significant amount of UCP mRNA and lipoprotein lipase mRNA. Immuno-electron-microscopic localization of UCP showed that developed mitochondria of cold-stressed inguinal adipocytes contained UCP in the same amount as uncoupled (UC)-mitochondria of brown adipocytes. Morphological and morphometrical analysis showed that such inguinal adipose tissue appeared as brown adipose tissue. Since in control mice, inguinal adipose tissue was UCP-negative and tissue appeared as white adipose tissue, the duration of this white-to-brown adipose tissue conversion was analyzed. Mice, cold stressed for 1 week, were rewarmed at 28° C and their inguinal adipose tissue was analyzed in comparison with interscapular brown adipose tissue and epididymal white adipose tissue for another 37 days. During that time inguinal adipocytes ceased expressing UCP mRNA; UC-mitochondria in inguinal adipocytes were destroyed and replaced with common, C-mitochondria; and UCP was undetectable immunohistochemically. Adipocytes accumulated lipids, and the tissue morphologically once again resembled white adipose tissue. Described changes showed that besides typical brown and white adipose tissue in mice, there existed a third type of adipose tissue described as convertible adipose tissue.  相似文献   

16.
Thiazolidinediones (TZDs) increase tissue insulin sensitivity in diabetes. Here, we hypothesize that, in adipose tissue, skeletal muscle, and heart, alterations in protein-mediated FA uptake are involved in the effect of TZDs. As a model, we used obese Zucker rats, orally treated for 16 days with 5 mg rosiglitazone (Rgz)/kg body mass/day. In adipose tissue from Rgz-treated rats, FA uptake capacity increased by 2.0-fold, coinciding with increased total contents of fatty acid translocase (FAT/CD36; 2.3-fold) and fatty acid transport protein 1 (1.7-fold) but not of plasmalemmal fatty acid binding protein, whereas only the plasmalemmal content of FAT/CD36 was changed (increase of 1.7-fold). The increase in FA uptake capacity of adipose tissue was associated with a decline in plasma FA and triacylglycerols (TAGs), suggesting that Rgz treatment enhanced plasma FA extraction by adipocytes. In obese hearts, Rgz treatment had no effect on the FA transport system, yet the total TAG content decreased, suggesting enhanced insulin sensitivity. Also, in skeletal muscle, the FA transport system was not changed. However, the TAG content remained unaltered in skeletal muscle, which coincided with increased cytoplasmic adipose-type FABP content, suggesting that increased extramyocellular TAGs mask the decline of intracellular TAG in muscle. In conclusion, our study implicates FAT/CD36 in the mechanism by which Rgz increases tissue insulin sensitivity.  相似文献   

17.
The concentrations of IgG, IgM, IgA and the specific sow colostrum trypsin inhibitor (SCTI) were measured by radial immunodiffusion in colostrum and milk samples from sows and in serum samples from their offspring during the suckling period. A clear time dependence was found for all the measured variates in both whey and serum. Statistically significant positive correlations were found between, on the one hand, concentrations of IgG and IgA, but not IgM, in sera from 39 suckling piglets 1 and 3 days old, and, on the other hand, concentrations of the same immunoglobulins and of the trypsin inhibitor in maternal colostrum (n = 7). Multiple regression analyses showed that at day 1 and day 3 the levels of both IgG and IgA in serum samples from the suckling piglets were positively influenced by both the SCTI and the IgG or IgA contents in maternal colostrum.  相似文献   

18.
Besides having a metabolic and insulatory-supporting function, adipose tissue in endotherms also performs a thermogenic function. Thermogenic adipocytes contain specific UC-mitochondria with uncoupling protein (UCP) and produce heat. Thermogenic adipose tissue has two forms: brown adipose tissue (BAT) and convertible adipose tissue (CAT). Brown adipocytes have UC-mitochondria and express UCP throughout the entire life of small rodents, chiropterans, and insectivores. However, in other endotherms and in humans CAT participates as thermogenic tissue only during early postnatal period. Both BAT and CAT start to develop in utero, although in some animals (hamsters, marsupials) or in some particular areas (thoraco-periaortal and medio-perirenal areas in rats) development of thermogenic adipose tissue starts after birth. Postnatal development of BAT in small endotherms is characterized by quantitative changes (the amount of UC-mitochondria, UCP, and lipids). Postnatal development of CAT causes qualitative changes during which UC-mitochondria in convertible adipocytes are replaced by common, nonthermogenic C-mitochondria; vascularization of adipocytes drops to a low level and, with lipid accumulation, convertible adipocytes appear as lipid-store cells. Postnatal development of CAT can be modulated or reversed by the environmental temperature. The duration of postnatal changes varies between species; i.e., cats, rabbits and sheep, change their thermogenic form of CAT into the lipid-store form within the first postnatal month, while in humans the same process takes up to 15-20 years. In maturity all these large endotherms have CAT in lipid-store form. In light of these results, the question of participation of thermogenic adipose tissue in the regulation of human obesity needs to be answered.  相似文献   

19.
To explore regional differences in triglyceride retention in white adipose tissues of growing male rats, the mass of adipocytes from epididymal, retroperitoneal, inguinal, and mesenteric tissues were followed with time. In order to attempt to explain regional differences, adipose tissue metabolism was studied in vivo and in vitro. (U-14 C) oleic acid in sesame oil was given by gastric gavage to conscious male and female rats, and accumulation and half-life of radioactivity measured. Lipoprotein lipase activity and lipolysis were studied in vitro. Adipocyte triglyceride mass increased linearly in all the depots during 4 months of observation. The increase in mass was more pronounced in retroperitoneal (0.31 μg) and epididymal (0.30 μg) than in mesenteric (0.11 μg) or inguinal (0.05 μg) adipocytes. In the fed state label from (U-14C) oleic acid first increased with time in liver, muscle, and adipose tissues. In the liver radioactivity peaked at 4 hours, and was not measurable in either liver or muscle after a time point between 24 hours to 1 week. In contrast label continued to increase in adipose tissues up to about 16 hours to 24 hours, suggesting transfer of label by recirculation from liver and muscle to adipose tissues. Thereafter the radioactivity decreased. When expressed per adipocyte uptake of label was not significantly different between white adipose tissues. The rate of decrease between 7 days and 4 months was, however, more rapid in mesenteric and inguinal than, particularly, epididymal, and, probably, retroperitoneal adipocytes. These results were partly parallel to in vitro data on lipoprotein lipase activity, which was not different between depots, and the rate of lipolysis, which was higher in mesenteric than other adipocytes. These results suggest that differences in weight increase of adipose tissue regions are due mainly to differences in the rate of mobilization of adipocyte triglycerides. When expressed per gram triglyceride, uptake and mobilization of label were clearly more rapid in mesenteric than other white adipose tissues. This is probably explained by a combination of a higher adipocyte density plus the metabolic characteristics of adipocytes in this depot. Since mesenteric adipose tissue is smaller than the other depots studied, the absolute contribution of this tissue to the energy supply of the body is probably not different from that of other adipose tissues, however. A large uptake and short half life was observed in interscapular adipose tissue. This region contains brown adipocytes, and the results therefore suggest that lipid uptake for thermogenic purposes is of a considerable magnitude. It was concluded that among white adipose tissues, the mesenteric tissue has a rapid turnover of triglyceride. This is probably due to a combination of a high density and specific metabolic characteristics of these adipocytes. Factors in the microenvironment of adipocytes probably contribute to the high turnover either directly, or by modification of cellular characteristics.  相似文献   

20.
Damon M  Vincent A  Lombardi A  Herpin P 《Gene》2000,246(1-2):133-141
Uncoupling proteins (UCPs) facilitate proton transport inside the mitochondria and decrease the proton gradient, leading to heat production. Until now, the presence of UCP1 or other UCP homologs had not been detected in tissues of pig, a species where evidence for the presence of brown adipose tissue has only been provided in 2-3 month old animals. In the light of the improving knowledge on the UCPs family, we decided to examine both UCP2 and UCP3 mRNA expression in piglet skeletal muscle and adipose tissue. Using RT-PCR we have successfully cloned a partial UCP2 sequence and a complete UCP3 cDNA. UCP3's open reading frame (936bp) shares 90, 89 and 85% similarity with bovine, human and rat UCP3 nucleotide sequences, respectively. In 3-5 day old piglets, these genes are expressed in adipose tissue and in both longissimus thoracis (LT) and rhombo?deus (RH) muscles, without any effect of muscle metabolic type. This is in good agreement with the measurement of the same membrane potential in mitochondria isolated from both types of muscles. In triiodothyronine-treated piglets, UCP3 mRNA is more expressed in LT than in RH muscle. These genes may be involved in the control of the energy metabolism of the piglet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号