首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Solanum tuberosum plants were transformed with three genetic constructions expressing the Nicotiana tabacum AP24 osmotine, Phyllomedusa sauvagii dermaseptin and Gallus gallus lysozyme, and with a double-transgene construction expressing the AP24 and lysozyme sequences. Re-transformation of dermaseptin-transformed plants with the AP24/lysozyme construction allowed selection of plants simultaneously expressing the three transgenes. Potato lines expressing individual transgenes or double- and triple-transgene combinations were assayed for resistance to Erwinia carotovora using whole-plant and tuber infection assays. Resistance levels for both infection tests compared consistently for most potato lines and allowed selection of highly resistant phenotypes. Higher resistance levels were found in lines carrying the dermaseptin and lysozyme sequences, indicating that theses proteins are the major contributors to antibacterial activity. Similar results were obtained in tuber infection tests conducted with Streptomyces scabies. Plant lines showing the higher resistance to bacterial infections were challenged with Phytophthora infestans, Rhizoctonia solani and Fusarium solani. Considerable levels of resistance to each of these pathogens were evidenced employing semi-quantitative tests based in detached-leaf inoculation, fungal growth inhibition and in vitro plant inoculation. On the basis of these results, we propose that stacking of these transgenes is a promising approach to achieve resistance to both bacterial and fungal pathogens.  相似文献   

4.
5.
The wilt diseases caused by Verticillium dahliae and Fusarium oxysporum are the major diseases of eggplant (Solanum melongena L.). In order to generate transgenic resistance against the wilt diseases, Agrobacterium-mediated gene transfer was performed to introduce alfalfa glucanase gene encoding an acidic glucanase into eggplant using neomycin phosphotransferase (npt-II) gene as a plant selection marker. The transgene integration into eggplant genome was confirmed by Polymerase chain reaction (PCR) and Southern blot analysis and transgene expression by the glucanase activity and western blot analysis. The selected transgenic lines were challenged with V. dahliae and F. oxysporum under in vitro and in vivo growth conditions, and transgenic lines showed enhanced resistance against the wilt-causing fungi with a delay of 5–7 days in the disease development as compared to wild-type plants.  相似文献   

6.
Defensins are small positively charged, antimicrobial peptides (~5 kDa in size) and some of them exhibit potent antifungal activity. We have cloned the complete cDNA containing an ORF of 243 bp of a defensin of mustard. The deduced amino acid sequence of the peptide showed more than 90% identity to the amino acid sequence of the well-characterized defensins, RsAFP-1 and RsAFP-2 of Raphanus sativus. We have generated and characterized transgenic tobacco and peanut plants constitutively expressing the mustard defensin. Transgenic tobacco plants were resistant to the fungal pathogens, Fusarium moniliforme and Phytophthora parasitica pv. nicotianae. Transgenic peanut plants showed enhanced resistance against the pathogens, Pheaoisariopsis personata and Cercospora arachidicola, which jointly cause serious late leaf spot disease. These observations indicate that the mustard defensin gene can be deployed for deriving fungal disease resistance in transgenic crops.  相似文献   

7.
Two different genes encoding class II chitinases from peanut (Arachis hypogaea L. cv. NC4), A.h.Chi2;1 and A.h.Chi2;2, have been cloned. In peanut cell suspension cultures, mRNA levels of A.h.Chi2;2 increased after ethylene or salicylate treatment and in the presence of conidia from Botrytis cinerea. The second gene, A.h.Chi2;1, was only expressed after treatment with the fungal spores. Transgenic tobacco plants containing the complete peanut A.h.Chi2;1 gene exhibited essentially the same expression pattern in leaves as observed in peanut cell cultures. Expression characteristics of transgenic tobacco carrying a promoter-GUS fusion of A.h.Chi2;1 are described.  相似文献   

8.
9.
10.
Green fluorescent protein (GFP) was successfully used as a visual reporter at various stages of carrot (Daucus carota L.) transformation. GFP-fluorescence was non-invasively observed in protoplasts, callus and plants after the delivery of mgfp5-er gene using two transformation methods: direct DNA transfer into polyethylene glycol (PEG) -treated protoplasts and inoculation of root discs with Agrobacterium rhizogenes. Transient GFP-expression was detected in the treated protoplasts and monitored during the first week of the cell culture until the stable level of expression was observed. It was useful for the comparison of protoplast susceptibility to DNA uptake and the transgene expression as the fluorescence declined with various rates depending on the used carrot genotype and PEG-concentration. GFP-monitoring in callus enabled the selection of stably expressing lines. It also allowed verification of the homogeneous tissue composition with regard to the expression of the transgene. In plants, GFP-performance depended on the assayed tissue and organ despite of the constitutive 35S promoter. The expression was visually detected in both vegetative and generative parts, but particularly strong fluorescence was observed in leaf marginal meristems, petioles, stems, and styles. Those tissues can be convenient for examination of the transgenic plants during their growth. The results encourage that GFP is a valuable reporter and can be routinely used for optimization of transformation protocol, selection of transformants and monitoring transgenic carrot.  相似文献   

11.
We report here the development of transgenic tobacco plants with thaumatin gene of Thaumatococcus daniellii under the control of a strong constitutive promoter-CaMV 35S. Both polymerase chain reaction and genomic Southern analysis confirmed the integration of transgene. Transgenic plants exhibited enhanced resistance with delayed disease symptoms against fungal diseases caused by Pythium aphanidermatum and Rhizoctonia solani. The leaf extract from transgenic plants effectively inhibited the mycelial growth of these pathogenic fungi in vitro. The transgenic seeds exhibited higher germination percentage and seedling survival under salinity and PEG-mediated drought stress as compared to the untransformed controls. These observations suggest that thaumatin gene can confer tolerance to both fungal pathogens and abiotic stresses.  相似文献   

12.
The percentage of cells successfully transformed by Agrobacteria is usually very low (not more than 10% and usually much less; Thomas et al., 1989). In this report we show that in carrot (Daucus carota L., ssp. sativus) cell suspensions transformation efficiency was strongly improved by using cell cycle synchronized cells. Fluorodesoxyuridine (FDU) was added for 24 h to inhibit thymidine synthesis. This blocked the cell cycle at the transition from G1- to S-phase. Then the block was released by applying thymidine. A high rate of transformation was obtained when Agrobacterium tumefaciens was added concurrently with thymidine. As examples of efficient and long term foreign gene expression in transgenic cells, the reporter enzyme -glucuronidase (GUS) as a model as well as the major hepatitis B virus surface protein were used. Both genes were linked to the MAS promoter. In carrot cell suspensions containing the viral gene, the corresponding viral protein was produced. In roots of mature transgenic carrot plants generated through somatic embryogenesis and raised in soil as well as in callus cultures derived thereof, the viral protein was also produced.  相似文献   

13.
Z. R. Sung  S. Jacques 《Planta》1980,148(4):389-396
Physiological studies of 5-fluorouracil (5-FU)-resistant cell line of wild carrot (Daucus carota L.), F5, showed that this variant is also resistant to 5-fluorouridine, but is as sensitive to 6-azauracil as the 5-FU-sensitive parent line, WOO1C. High levels of exogenous uracil, uridine, and thymine are slightly toxic to F5, but not to WOO1C. 5-FU sensitivity in WOO1C cannot be reversed by bases and nucleosides; bases like uracil and thymine even increase 5-FU toxicity. No substantial differences were found in the uptake, incorporation and degradation of WOO1C and F5. Carrot cultures seem to take up 5-FU by rapid diffusion, the kinetics being characteristic of non-saturable uptake, with infinite Km and zero Vmax. The rapid uptake of 5-FU and extensive degradation of bases and nucleosides are probably responsible for the inability of uracil and uridine to reverse the growth inhibition caused by 5-FU in carrot cells while, as shown earlier, phaseolotoxin ((N-phosphosulfamyl)ornithinylalanylhomoarginine), an inhibitor of the arginine biosynthetic enzyme, ornithine transcarbamylase was capable of reducing 5-FU toxicity. F5 callus contained less histidine and arginine than WOO1C. 5-FU increased the endogenous levels of arginine, histidine and aspartate in both lines. The aspartate transcarbamylase of F5 appears to be normal; it is as sensitive to uridine-monophosphate inhibition as that of WOO1C. The 5-FU resistance of F5 was stable in undifferentiated cells, but only 8 out of 50 calli reinitiated from the regenerated plantlets remained resistant to 5-FU. F5 is an aneuploid culture. Five 5-FU-sensitive reinitiated calli that were examined were all diploid whereas of the eight 5-FU-resistant reinitiated calli two became diploid and six remained as aneuploid.Abbreviation 5-FU 5-fluorouracil  相似文献   

14.
A chitinase gene from rice (Rchit) was introduced into three varieties of peanut through Agrobacterium-mediated genetic transformation resulting in 30 transgenic events harboring the Rchit gene. Stable integration and expression of the transgenes were confirmed using PCR, RT-PCR and Southern blot analysis. Progeny derived from selfing of the primary transgenic events revealed a Mendelian inheritance pattern (3:1) for the transgenes. The chitinase activity in the leaves of the transgenic events was 2 to 14-fold greater than that in the non-transformed control plants. Seeds of most transgenic events showed 0–10 % A. flavus infection during in vitro seed inoculation bioassays. Transgenic peanut plants evaluated for resistance against late leaf spot (LLS) and rust using detached leaf assays showed longer incubation, latent period and lower infection frequencies when compared to their non-transformed counterparts. A significant negative correlation existed between the chitinase activity and the frequency of infection to the three tested pathogens. Three progenies from two transgenic events displayed significantly higher disease resistance for LLS, rust and A. flavus infection and are being advanced for further evaluations under confined field conditions to confirm as sources to develop peanut varieties with enhanced resistance to these fungal pathogens.  相似文献   

15.
The potential role in plant defence of the two wheat pathogenesis-related proteins of class 4 Wheatwin1 and Wheatwin2, possessing high in vitro antimicrobial activity against several pathogens, was investigated through over-expression of their encoding genes wPR4a and wPR4b in transgenic tobacco plants. Several independent transformants were obtained, expressing high levels of either transgene when analysed by northern and western blotting. Accumulation of the wPR4b-encoded protein Wheatwin2 in the apoplast of transgenic plants was also demonstrated. When homozygous transgenic lines in the T4 generation were tested for increased tolerance to Phytophthora nicotianae, they were found to be significantly more resistant than both the wild type and their isogenic, non-wPR4 transgenic lines. These results suggest that both Wheatwins might have in vivo antimicrobial activity, confirming earlier indications from in vitro assays.  相似文献   

16.
17.
Fusarium head blight (FHB) of wheat, caused by Fusarium graminearum and other Fusarium species, is a major disease problem for wheat production worldwide. To combat this problem, large-scale breeding efforts have been established. Although progress has been made through standard breeding approaches, the level of resistance attained is insufficient to withstand epidemic conditions. Genetic engineering provides an alternative approach to enhance the level of resistance. Many defense response genes are induced in wheat during F. graminearum infection and may play a role in reducing FHB. The objectives of this study were (1) to develop transgenic wheat overexpressing the defense response genes α-1-purothionin, thaumatin-like protein 1 (tlp-1), and β-1,3-glucanase; and (2) to test the resultant transgenic wheat lines against F. graminearum infection under greenhouse and field conditions. Using the wheat cultivar Bobwhite, we developed one, two, and four lines carrying the α-1-purothionin, tlp-1, and β-1,3-glucanase transgenes, respectively, that had statistically significant reductions in FHB severity in greenhouse evaluations. We tested these seven transgenic lines under field conditions for percent FHB disease severity, deoxynivalenol (DON) mycotoxin accumulation, and percent visually scabby kernels (VSK). Six of the seven lines differed from the nontransgenic parental Bobwhite line for at least one of the disease traits. A β-1,3-glucanase transgenic line had enhanced resistance, showing lower FHB severity, DON concentration, and percent VSK compared to Bobwhite. Taken together, the results showed that overexpression of defense response genes in wheat could enhance the FHB resistance in both greenhouse and field conditions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号