首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Escherichia coli K-12 mutant strain AE4107 (livH::Mu) is defective in the high-affinity binding protein-mediated uptake system for L-leucine, L-valine, and L-isoleucine (LIV-I). We have used this strain to produce mutations in the residual LIV-II membrane-bound branched-chain amino acid uptake system. Mutants selected for their inability to utilize exogenous L-leucine were found to be defective in the LIV-II system and fell into two classes. One class, represented by strain AE410709 (livP9), showed a complete loss of saturable uptake for L-leucine, L-valine, and L-isoleucine up to 50 muM, and a second class, represented by strain AE4017012 (liv-12), showed a residual component of saturable leucine uptake with increased Km. These mutations, livP9 and liv-12, were closely linked and mapped in the 74 to 78 min region of the E. coli genetic map. Strains constructed so that they lacked both LIV-I and LIV-II transport systems excreted leucine. Strains of the genotype livH+ livP were found to have normal high-affinity binding protein-mediated transport (LIV-I and leucine specific), whereas the low-affinity (LIV-II) transport was completely missing. We concluded from these studies that the high-affinity binding protein-mediated transport systems (LIV-I and leucine specific) can operate independently of the membrane-bound LIV-II system.  相似文献   

2.
A. C. Borstlap 《Planta》1981,151(4):314-319
The joint action of L-valine and L-isoleucine, L-leucine and L-isoleucine, and L-valine and L-leucine on the growth of Spirodela polyrhiza was established. The effect of one branched-chain amino acid on growth inhibition by another one was compared with the non-specific antagonisms which glycine and L-alanine exert on growth inhibition by singly supplied branched-chain amino acids. In this way specific and non-specific interactions could be distinguished. It appeared that: (1) L-isoleucine was a specific antagonist of L-valine; (2) L-leucine was a specific antagonist of L-isoleucine; (3) L-valine and L-leucine were synergistic growth inhibitors. Further, it was found that: (4) growth inhibition by L-leucine was specifically antagonized by simultaneously supplied L-valine and L-isoleucine; (5) an excess of L-isoleucine strongly inhibited the conversion of exogenous valine into leucine; (6) accumulation of valine was typical of isoleucine-induced growth inhibition. The results are consistent with the view that growth inhibition by L-valine and L-leucine is due to the blocking of acetohydroxy acid synthetase, the first common enzyme in the valine-isoleucine biosynthetic pathway. Growth inhibition by L-isoleucine, however, seems to result from inhibition of leucine synthesis at a step after 2-oxoisovaleric acid. Some aspects of the regulation of branched-chain amino acid biosynthesis in higher plants are discussed.  相似文献   

3.
The photosynthetic purple sulfur bacterium, Chromatium vinosum, takes up the amino acids, L-phenylalanine and L-leucine, via two apparently different electrogenic, H+/amino acid symports. Na+ serves as an allosteric modulator for leucine transport, lowering the Km for leucine from 66 to 15 microM. C. vinosum cells also contain a system that transports both isoleucine and valine. The isoleucine/valine system has the attributes of a H+/amino acid symport at pH less than 7.5 but appears to function as a H+/Na+ (Li+)/amino acid symport at pH greater than or equal to 7.5. Na+ gradients produce an allosteric lowering of the Km values for both isoleucine and valine, from 14 to 7 microM and from 34 to 17 microM, respectively. C. vinosum also accumulates D-alanine in an energy-dependent reaction. The transport process appears to involve the electrogenic cotransport of D-alanine and Na+. The Km value for D-alanine was determined to be 9 microM. Unlike the previously characterized C. vinosum L-alanine/Na+ symport, Na+ gradients did not affect the Km for D-alanine transport. L-Alanine and glycine, but not alpha-aminoisobutyric acid, act as competitive inhibitors for D-alanine transport.  相似文献   

4.
Uptake of leucine by the marine pseudomonad B-16 is an energy-dependent, concentrative process. Respiratory inhibitors, uncouplers, and sulfhydryl reagents block transport. The uptake of leucine is Na+ dependent, although the relationship between the rate of leucine uptake and Na+ concentration depends, to some extent, on the ionic strength of the suspending assay medium and the manner in which cells are washed prior to assay. Leucine transport can be separated into at least two systems: a low-affinity system with an apparent Km of 1.3 X 10(-5) M, and a high-affinity system with an apparent Km of 1.9 X 10(-7) M. The high-affinity system shows a specificity unusual for bacterial systems in that both aromatic and aliphatic amino acids inhibit leucine transport, provided that they have hydrophobic side chains of a length greater than that of two carbon atoms. The system exhibits strict stereospecificity for the L form. Phenylalanine inhibition was investigated in more detail. The Ki for inhibition of leucine transport by phenylalanine is about 1.4 X 10(-7) M. Phenylalanine itself is transported by an energy-dependent process whose specificity is the same as the high-affinity leucine transport system, as is expected if both amino acids share the same transport system. Studies with protoplasts indicate that a periplasmic binding protein is not an essential part of this transport system. Fein and MacLeod (J. Bacteriol. 124:1177-1190, 1975) reported two neutral amino acid transport systems in strain B-16: the DAG system, serving glycine, D-alanine, D-serine, and alpha-aminoisobutyric acid; and the LIV system, serving L-leucine, L-isoleucine, L-valine, and L-alanine. The high-affinity system reported here is a third neutral amino acid transport system in this marine pseudomonad. We propose the name "LIV-II" system.  相似文献   

5.
Five mutants, CD15, CD31, CE4, CE5, and CE14, defective in the transport of branched-chain amino acids were isolated as glycyl-l-isoleucine and glycyl-l-valine requirers from an isoleucine-valine-requiring mutant, KA931, of Salmonella typhimurium LT2. Although these transport mutants do not grow in minimal medium supplemented with isoleucine (10 mug/ml) and valine (20 mug/ml), where the parent strain, KA931, grows normally, they do when the supplements are increased 10-fold in concentration, and the growth rate becomes comparable to that of the parent strain. When the apparent K(m) and V(max) for uptake of isoleucine, valine, and leucine in the transport mutants were compared to those of KA931, the K(m) was generally lower in the mutants, and the V(max) for isoleucine and leucine decreased to one-fourth to one-seventh and for valine one-eighth to one-fifteenth of that in the parent. In all mutants except CE5, the transport of methionine, arginine, threonine, and glycine was normal. The transport of threonine in CE5 appeared to be slightly impaired. In addition to the original mutation in the ilvC locus, the transport mutant has a mutation at the ilvT locus, which is closely linked to proC and may be located on the side of proC proximal to purE. About 26-fold difference in values of the co-transduction is noted in reciprocal transductions between KA502 and CD15 strains.  相似文献   

6.
7.
Neurological dysfunction is common in patients with maple syrup urine disease (MSUD). However, the mechanisms underlying the neuropathology of this disorder are poorly known. In the present study we investigated the effect of acute hyperleucinemia on plasma and brain concentrations of amino acids. Fifteen-day-old rats were injected subcutaneously with 6 micromol L-leucine per gram body weight. Controls received saline in the same volumes. The animals were sacrificed 30--120 min after injection, blood was collected and their brain rapidly removed and homogenized. The amino acid concentrations were determined by HPLC using orthophtaldialdehyde for derivatization and fluorescence for detection. The results showed significant reductions of the large neutral amino acids (LNAA) L-phenylalanine, L-tyrosine, L-isoleucine, L-valine and L-methionine, as well as L-alanine, L-serine and L-histidine in plasma and of L-phenylalanine, L-isoleucine, L-valine and L-methionine in brain, as compared to controls. In vitro experiments using brain slices to study the influence of leucine on amino acid transport and protein synthesis were also carried out. L-Leucine strongly inhibited [14C]-L-phenylalanine transport into brain, as well as the incorporation of the [14C]-amino acid mixture, [14C]-L-phenylalanine and [14C]-L-lysine into the brain proteins. Although additional studies are necessary to evaluate the importance of these effects for MSUD, considering previous findings of reduced levels of LNAA in plasma and CSF of MSUD patients during crises, it may be speculated that a decrease of essential amino acids in brain may lead to reduction of protein and neurotransmiter synthesis in this disorder.  相似文献   

8.
A specific enzymatic method for the routine measurement of L-leucine in blood samples is presented. The method uses a commercial preparation of tRNAs and amino acetyl-tRNA synthetases for the specific loading of L-leucine into the tRNA(Leu) present, competing with carrier-free L-[U-14C]leucine. The radioimmunoassay-like plot of radioactivity found in the acid-insoluble (tRNA) fraction was used to determine the amount of unlabelled L-leucine of the samples when compared against a standard curve. The interference of L-isoleucine, L-valine and L-alanine was very low.  相似文献   

9.
Semipermeable nylon-polyethylenimine artificial cells containing leucine dehydrogenase (EC 1.4.1.9), alcohol dehydrogenase (EC 1.1.1.1), urease (EC 3.5.1.5), and dextran-NAD+ were prepared. Artificial cells could convert ammonia or urea into L-leucine, L-valine, and L-isoleucine. For batch conversion in 20.0 mM of ammonium acetate substrate solutions, in 2 h 0.2 ml of artificial cells could produce 4.48 mumol of L-leucine, 9.98 mumol of L-valine, or 5.96 mumol of L-isoleucine. The corresponding conversion ratios were 22.4, 49.9, and 29.8%. In 20.0 mM of urea substrate solutions, 13.71 mumol of L-leucine, 16.12 mumol of L-valine, or 13.44 mumol of L-isoleucine was produced and the conversion ratios were 68.6, 80.6, and 67.2%. The substrate specificity of leucine dehydrogenase for the reductive amination was determined. Of the three branched-chain amino acids produced, the production rates of L-valine were the highest. The apparent Km values were as follows: 0.32 mM for alpha-ketoisocaproate, 1.63 mM for alpha-ketoisovalerate, and 0.73 mM for Dl-alpha-keto-beta-methyl-n-valerate. The leucine dehydrogenase multienzyme system had a good storage stability. It retained 72.0% of the original activity with artificial cells were stored at 4 degrees C for 6 weeks. The optimum conversion pH and temperature were 8.5-9.0 and 35-40 degrees C. The effects of urea and ammonium salts on conversion rate were also studied. The relative activities in ammonium salts solutions were 45.1-75.9% of those in urea solutions.  相似文献   

10.
Addition of L-valine (50 to 200 mM) to glucose minimal medium had no effect on the growth of wild-type Corynebacterium glutamicum ATCC 13032 but inhibited the growth of the derived valine production strain VAL1 [13032 DeltailvA DeltapanBC(pJC1ilvBNCD)] in a concentration-dependent manner. In order to explore this strain-specific valine effect, genomewide expression profiling was performed using DNA microarrays, which showed that valine caused an increased ilvBN mRNA level in VAL1 but not in the wild type. This unexpected result was confirmed by an increased cellular level of the ilvB protein product, i.e., the large subunit of acetohydroxyacid synthase (AHAS), and by an increased AHAS activity of valine-treated VAL1 cells. The conclusion that valine caused the limitation of another branched-chain amino acid was confirmed by showing that high concentrations of L-isoleucine could relieve the valine effect on VAL1 whereas L-leucine had the same effect as valine. The valine-caused isoleucine limitation was supported by the finding that the inhibitory valine effect was linked to the ilvA deletion that results in isoleucine auxotrophy. Taken together, these results implied that the valine effect is caused by competition for uptake of isoleucine by the carrier BrnQ, which transports all branched-chained amino acids. Indeed, valine inhibition could also be relieved by supplementing VAL1 with the dipeptide isoleucyl-isoleucine, which is taken up by a dipeptide transport system rather than by BrnQ. Interestingly, addition of external valine stimulated valine production by VAL1. This effect is most probably due to a reduced carbon usage for biomass production and to the increased expression of ilvBN, indicating that AHAS activity may still be a limiting factor for valine production in the VAL1 strain.  相似文献   

11.
Seven platinum(II) complexes of the type [Pt(bipy)(AA)]n+ (where n = 1 or 0 and AA is anion of L-valine, L-isoleucine, L-aspartic acid (dianion), L-glutamic acid (dianion), L-glutamine, L-proline, or S-methyl-L-cysteine) have been prepared and characterized. The modes of binding of amino acids in these complexes have been ascertained particularly by infrared and 1H NMR spectral studies. The L-glutamine complex shows a ID50 value (50% inhibitory dose) in the range of greater than 20 micrograms/ml to 100 micrograms/ml of the complex. However, the complexes of L-valine, L-isoleucine, L-aspartic acid, L-glutamic acid, L-proline, and S-methyl-L-cysteine show ID50 values greater than 100 micrograms/ml of the complex. The above complexes also show inferior growth inhibition of P-388 cells than platinum(II) complexes of 2,2'-bipyridine with L-alanine, L-leucine, L-methionine, and L-aspargine as reported earlier. The platinum(II) complexes of 2,2'-bipyridine with glycine (Gly), L-alanine (Ala), L-leucine (leu), L-valine (Val), L-methionine (Met), L-phenylalanine (Phe), L-serine (Ser), L-tyrosine (Tyr) and L-tryptophan (Trp) have been tested for mutagenesis using TA 100 and TA 98 strains. They show nonmutagenicity. This is in contrast to the cis-[Pt(NH3)2Cl2] showing a base pair substitution mutagenesis.  相似文献   

12.
The uptake of a number of amino acids by the developing small intestine of the rat was investigated in vitro. L-valine, L-leucine, L-methionine, L-phenylalanine, L-arginine and L-lysine were all taken up by active transport and concentrated within the jejunal mucosa. GABA was not actively transported by the jejunum. The kinetics of carrier transport of amino acids was determined from birth to maturity. The Michaelis constant (Km) of the L-leucine, L-methionine, L-arginine and l-lysine transport systems was found to be low postnatally and increased with age, particularly after the time of weaning. The rate of l-leucine, L-methionine, L-phenylalanine and L-lysine transport (Vmax) was high postnatally but decreased after weaning. Neutral amino acids were transported at higher rates than basic amino acids. l-arginine was poorly transported by the jejunum. The specificity of transport systems for amino acids was investigated in inhibition studies. Amino acid transport systems appeared to be polyfunctional in the postnatal period but were more specific in post-weaned animals. The changes in kinetics and specificity of amino acid transport in the small intestine are discussed with reference to their possible functional significance and to the maturational changes in the jejunum, particularly with the appearance of a functionally distinct absorptive cell lining the intestinal villi during the third postnatal week (the time of weaning).  相似文献   

13.
Transport of L-valine by Actinomyces species 26-115, an organism producing actinomycin C depended on L-valine concentration in the medium and temperature and required a source of intrinsic energy. Km for L-valine transport was 3.5.10(-6)--6.0.10(-6) M. It somewhat differed from experiment to experiment. The above system transported also other neutral amino acids. L-isoleucine was a competing inhibitor of L-valine transport. The transport of L-valine was stereospecific. The activity of the transport system was regulated by the intracellular content of L-valine. Probably because of this the amino acid transport depended on the culture age, so far as the level of free valine in the mycelium at various stages of development was different.  相似文献   

14.
Membrane vesicles were prepared by osmotic lysis of spheroplasts of Pseudomonas aeruginosa strain P14, and the active transport of amino acids was studied. D-Glucose, gluconate, and L-malate supported active transport of various L-amino acids. The respiration-dependent leucine transport was markedly stimulated by Na+. Moreover, without any respiratory substrate, leucine was also transported transiently by the addition of Na+ alone. This transient uptake of leucine was not inhibited either by carbonyl cyanide p-trifluoromethyoxyphenylhydrazone or by valinomycin, but was completely abolished by gramicidin D. Increase in the concentration of Na+ of the medium resulted in a decrease of the Km for L-leucine transport, whereas the Vmax was not significnatly affected. Active transport of leucine was inhibited competitively by isoleucine or by valine, whose transport was also stimulated by Na+. On the other hand, Na+ was not required for the uptake of other L-amino acids tested, but rather was inhibitory for some of them. These results show (i) that a common transport system for branched-chain amino acids exists in membrane vesicles, (ii) that the system requires Na+ for its activity, and (iii) that an Na+ gradient can drive the system.  相似文献   

15.
The gene product of braB encoding the Na+(Li+)-coupled carrier protein for L-leucine, L-isoleucine, and L-valine (LIV-II carrier) of Pseudomonas aeruginosa PML strain was identified and overexpressed using a T7 RNA polymerase/promoter plasmid system. The gene product was pulse-labeled with [35S]methionine as a protein of an apparent Mr of 34,000 on a sodium dodecyl sulfate-polyacrylamide gel. Cell membranes overproducing the LIV-II carrier were solubilized with n-dodecyl beta-D-maltopyranoside. The carrier protein was purified from the detergent extract by two purification steps: (i) immunoaffinity column chromatography using purified polyclonal antibody directed against synthetic 13-mer peptide corresponding to the carboxyl terminus region of the carrier and (ii) subsequent DEAE-cellulose column chromatography. The detergent was replaced by n-octyl beta-D-glucopyranoside prior to the first elution and phospholipid was present during purification. Proteoliposomes reconstituted with the purified LIV-II carrier exhibited Na+ or Li+ concentration gradient-driven transport of leucine, isoleucine, and valine. These results show that the LIV-II carrier was purified to be in a functional form.  相似文献   

16.
Amino acid transport in membrane vesicles of Bacillus stearothermophilus was studied. A relatively high concentration of sodium ions is needed for uptake of L-alanine (Kt = 1.0 mM) and L-leucine (Kt = 0.4 mM). In contrast, the Na(+)-H(+)-L-glutamate transport system has a high affinity for sodium ions (Kt less than 5.5 microM). Lithium ions, but no other cations tested, can replace sodium ions in neutral amino acid transport. The stimulatory effect of monensin on the steady-state accumulation level of these amino acids and the absence of transport in the presence of nonactin indicate that these amino acids are translocated by a Na+ symport mechanism. This is confirmed by the observation that an artificial delta psi and delta mu Na+/F but not a delta pH can act as a driving force for uptake. The transport system for L-alanine is rather specific. L-Serine, but not L-glycine or other amino acids tested, was found to be a competitive inhibitor of L-alanine uptake. On the other hand, the transport carrier for L-leucine also translocates the amino acids L-isoleucine and L-valine. The initial rates of L-glutamate and L-alanine uptake are strongly dependent on the medium pH. The uptake rates of both amino acids are highest at low external pH (5.5 to 6.0) and decline with increasing pH. The pH allosterically affects the L-glutamate and L-alanine transport systems. The maximal rate of L-glutamate uptake (Vmax) is independent of the external pH between pH 5.5 and 8.5, whereas the affinity constant (Kt) increases with increasing pH. A specific transport system for the basic amino acids L-lysine and L-arginine in the membrane vesicles has also been observed. Transport of these amino acids occurs most likely by a uniport mechanism.  相似文献   

17.
A novel L-threonine transport system is induced in Escherichia coli cells when incubated in amino acid-rich medium under anaerobic conditions. Genetic and biochemical analyses with plasmids harboring mutations in the anaerobically expressed tdcABC operon indicated that the tdcC gene product was responsible for L-threonine uptake. Competition experiments revealed that the L-threonine transport system is also involved in L-serine uptake and is partially shared for L-leucine transport; L-alanine, L-valine, and L-isoleucine did not affect L-threonine uptake. Transport of L-threonine was inhibited by the respiratory chain inhibitors KCN and carbonyl cyanide m-chlorophenylhydrazone and was Na+ independent. These results identify for the first time an E. coli gene encoding a permease specific for L-threonine-L-serine transport that is distinct from the previously described threonine-serine transport systems. A two-dimensional topological model predicted from the amino acid composition and hydropathy plot showed that the TdcC polypeptide appears to be an integral membrane protein with several membrane-spanning domains exhibiting a striking similarity with other bacterial permeases.  相似文献   

18.
Regulation of acetohydroxyacid synthetase in Bacillus subtilis   总被引:1,自引:0,他引:1  
Summary In Bacillus subtilis, the activity of aceto hydroxyacid synthetase is inhibited by L-valine. The valine effect is antagonized by the simultaneous addition of L-isoleucine and L-leucine. Repression of enzyme formation required an excess of leucine and valine in the growth medium.  相似文献   

19.
The energetics of amino acid uptake by the developing small intestine was investigated in vitro. L-valine, L-leucine, L-phenylalanine, L-methionine, L-lysine and L-arginine were all actively transported by the newborn rat jejunum. Metabolic inhibitors (e.g. 2,4-dinitrophenol) significantly reduced uptake of all amino acids but uptake against a concentration gradient was not totally abolished. Uptake of all amino acids was reduced at low[Na+]. Inhibition of transport of neutral amino acids by reduced luminal [Na+] was greater than that of basic amino acids, and the tissue was barely able to concentrate the neutral amino acids. [Na+] affected the Michaelis constant (Km) of neutral transport systems for their substrates; for the basic amino acids Km values were unaffected by the presence or absence of Na+. Ouabain significantly inhibited neutral amino acid uptake but had no effect on L-lysine or L-arginine uptake. These results are discussed in terms of the Na+ gradient hypothesis for amino acid transport, and the site of energy input to active transport. The role of glycolysis in providing energy for intestinal transport in the neonatal rat and the efficiency of Na+ dependent and independent transport mechanisms are considered. It is concluded that the energetics of amino acid transport systems in neonatal and adult rats are essentially similar.  相似文献   

20.
A branched-chain amino acid aminotransferase was extracted from rumen ciliates of the genus Entodinium and was partially purified by Sephadex G-200, DEAE-cellulose and DEAE-Sephasex A-50 column chromatography. The purified enzyme was active only with leucine, isoleucine and valine, and required pyridoxal phosphate as cofactor. The amino acids competed with each other as substrates. The enzyme had optimal activity at pH 6.0 in phosphate buffer. The Km values for the substrates and cofactor are as follows: 1.66 for leucine; 0.90 for isoleucine; 0.79 for valine; 0.29 mM for alpha-ketoglutarate; and 0.1 muM for pyridoxal phosphate. Enzyme activity was inhibited by rho-chloromercuribenzoate and HgCl2. Gel filtration indicated the enzyme to have a molecular weight of 34,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号