首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three strains (LM008T, LM068 and LM078T), representing two novel yeast species were isolated from the phylloplane of three plant species by an enrichment technique. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, and the sequence analysis of the D1/D2 domain of the large subunit rRNA gene and the internal spacer region, the three strains were assigned as two novel Candida species. Strain LM008T was assigned to be Candida sirachaensis sp. nov. (type strain LM008T = BCC 47628T = NBRC 108605T CBS 12094T) in the Starmerella clade. Two strains (LM068 and LM078T) represent a single species in the Lodderomyces-Spathaspora clade for which the name Candida sakaeoensis sp. nov. is proposed with the type strain LM078T = BCC 47632T = NBRC 108895T = CBS 12318T.  相似文献   

2.
3.
During a survey of yeasts associated with raw honey collected in Thailand, two strains of the Zygoascus clade were isolated from the Asian cavity-nesting honeybee Apis cerana and the stingless bee Homotrigona fimbriata. Phylogeny based on 26S rDNA D1/D2 sequences placed these yeasts as members of a clade including Candida bituminiphila, Candida patagonica and Candida polysorbophila. The strains of the two novel species, CBS 12271T and CBS 12270T, respectively, could be unquestionably distinguished from their relatives by rDNA sequences and other taxonomic characteristics. Therefore, the novel anamorphic species, Candida lundiana sp. nov. (type strain CBS 12271T = JCM 16823T) and Candida suthepensis sp. nov. (type strain CBS 12270T = JCM 16822T) are described.  相似文献   

4.
Flower-visiting beetles belonging to three species of Cetoniidae were collected on three mountains near Beijing, China, and yeasts were isolated from the gut of the insects collected. Based on the 26S rDNA D1/D2 domain and internal transcribed spacer (ITS) region sequence analysis and phenotypic characterization, four novel anamorphic yeast species located in the Candida albicans/Lodderomyces elongisporus clade were identified from 18 of the strains isolated. The new species and type strains are designated as Candida blackwellae AS 2.3639T (=CBS 10843T), Candida jiufengensis AS 2.3688T (=CBS 10846T), Candida oxycetoniae AS 2.3656T (=CBS 10844T), and Candida pseudojiufengensis AS 2.3693T (=CBS 10847T). C. blackwellae sp. nov. was basal to the branch formed by C. albicans and C. dubliniensis with moderately strong bootstrap support. The closest relative of C. oxycetoniae was L. elongisporus. C. jiufengensis sp. nov. and C. pseudojiufengensis sp. nov. were closely related with each other and formed a branch in a subclade represented by C. parapsilosis and L. elongisporus.  相似文献   

5.
Parsimony network analysis of rDNA sequences was used to delimit phylogenetic species of yeasts in an objective, formal manner. Many strains assigned to Candida apicola (Starmerella clade), when compared to the type, fell outside the inclusion limits proposed by Kurtzman and Robnett (1998) based on a pair-wise comparison of the large subunit rRNA gene D1/D2 domains. However, when these sequences were analyzed jointly with ITS rDNA sequences by parsimony network analysis, 28 of the 30 strains formed a cohesive set. Two strains, MUCL 45721 and CBS 4353, were excluded from the species, but there was no evident justification to subdivide the rest. A similar analysis of 81 isolates originally assigned to Candida azyma (Wickerhamiella clade) yielded dramatically different results, giving rise to six independent networks corresponding to Candida azyma sensu stricto (18 strains), Candida azymoides (2 strains), a pair of isolates from Australian hibiscus flowers, a single isolate from the same substrate, a single isolate from Malaysian bertam palm nectar, and 57 isolates that are assigned to the new species Candida parazyma (type = UWOPS 91-652.1T = CBS 11563T = NRRL Y-48669T). The strains retained in C. azyma sensu stricto differed from one another by up to four substitutions in their D1/D2 sequences, but their polymorphism at the level of the ITS was considerable and suggested a history of divergence resulting from dispersal. Strains of C. parazyma fell into seven variant haplotypes based on sequences of the rDNA ITS and D1/D2 regions. The most abundant haplotype occurred across the global range of the species. Others were either endemic to Belize, Costa Rica, Rarotonga, or Tennessee, suggestive of vicariance, or occurred across remote localities, offering partial support to the notion of rapid dispersal.  相似文献   

6.
A new yeast species, Candida gelsemii, is described to accommodate three isolates recovered in Georgia, USA, from the toxic nectar of the Carolina jessamine (Gelsemium sempervirens). The species resembles other members of the Metschnikowiaceae clade that have been recovered from nectar, but differs in a number of morphological and physiological characteristics. Analysis of rDNA sequences places the new species well into the clade, but in a basal position with respect to a group of Metschnikowia and Candida species known to occur in association with nectars and bees, as well as marine invertebrates. The type is strain UWOPS 06–24.1T (CBS 10509T, NRRL Y-48212T.  相似文献   

7.
8.
Five strains (LN12, LN14T, LN15T, LN16 and LN17T) representing three novel methylotrophic yeast species were isolated from the external surface of plant leaves by three-consecutive enrichments. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, the sequence analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene and the phylogenetic analysis, the five strains were assigned to be one novel Ogataea species and two novel Candida species. Three strains (LN12, LN14T and LN16) represent a single novel species of the genus Ogataea, for which the name Ogataea phyllophila sp. nov. is proposed. The type strain is LN14T (= BCC 42666T = NBRC 107780T = CBS 12095T). Strain LN15T was assigned to be Candida chumphonensis sp. nov. (type strain LN15T = BCC 42667T = NBRC 107781T = CBS 12096T). Strain LN17T represented another novel species of Candida that was named Candida mattranensis sp. nov. (type strain LN17T = BCC 42668T = NBRC 107782T = CBS 12097T).  相似文献   

9.
A novel anamorphic yeast strain, A1-01T, belonging to the genus Rhodotorula was isolated from a plant in Taiwan and analysed morphologically, physiologically and phylogenetically. Neither ballistoconidia nor sexual reproduction was observed. Sequence analysis of the 26S rRNA gene and the ITS region indicate that Rhodosporidium sphaerocarpum is the most closely related species, with 14 and 24 nucleotide substitutions, respectively. The novel species differed physiologically from R. sphaerocarpum in its ability to assimilate ethylamine and cadaverine, its inability to assimilate ethanol and nitrite. From these comparative analyses, the following novel yeast species is proposed: Rhodotorula taiwanensis sp. nov. with the type strain of A1-01T (BCRC 23118T = CBS 11729T).  相似文献   

10.
Xylitol was produced by selected species of the yeast Candida after growth on a medium containing a hydrolysate of the North American perennial prairie grass big bluestem. The grass was hydrolysed by a combination of dilute acid and enzymatic treatments. After growth on the medium for 120 h at 30 °C, Candida tropicalis ATCC 750 produced a 1.4-fold higher level of xylitol than did C. tropicalis ATCC 20215 while biomass production by C. tropicalis ATCC 750 was 1.7-fold higher than Candida guilliermondii ATCC 20216. The xylitol yields observed for C. tropicalis ATCC 750, Candida mogii ATCC 18364 and C. guilliermondii ATCC 20216 were at least 1.4-fold higher than the yield observed for C. tropicalis ATCC 20215 after growth for 120 h at 30 °C.  相似文献   

11.
The inhibitory action of acetic acid, ferulic acid, and syringaldehyde on metabolism of Candida guilliermondii yeast during xylose to xylitol bioconversion was evaluated. Assays were performed in buffered and nonbuffered semidefined medium containing xylose as main sugar (80.0 g/l), supplemented or not with acetic acid (0.8–2.6 g/l), ferulic acid (0.2–0.6 g/l), and/or syringaldehyde (0.3–0.8 g/l), according to a 23 full factorial design. Since only individual effects of the variables were observed, assays were performed in a next step in semidefined medium containing different concentrations of each toxic compound individually, for better understanding of their maximum concentration that can be present in the fermentation medium without affecting yeast metabolism. It was concluded that acetic acid, ferulic acid, and syringaldehyde are compounds that may affect Candida guilliermondii metabolism (mainly cell growth) during bioconversion of xylose to xylitol. Such results are of interest and reveal that complete removal of toxic compounds from the fermentation medium is not necessary to obtain efficient conversion of xylose to xylitol by Candida guilliermondii. Fermentation in buffered medium was also considered as an alternative to overcome the inhibition caused by these toxic compounds, mainly by acetic acid.  相似文献   

12.
Three ascosporogenous yeast strains were isolated from the gut of the passalid beetle, Odontotaenius disjunctus, inhabiting on rotten oak trees. DNA sequence comparison and other taxonomic characteristics identified the strains as a novel species in the genus Kazachstania. The name Kazachstania intestinalis sp. nov. (type strain EH085T = ATCC MYA-4658T = CBS 11839T) is proposed for the strains. The yeast is homothallic, producing persistent asci with 1–4 spheroidal ascospores. Molecular phylogeny from ribosomal RNA gene sequences placed this novel species on the basal lineage of a clade including Kazachstania lodderae, Kazachstania exigua, Kazachstania martiniae, and other related Kazachstania spp., but none of those species was a close sister to K. intestinalis.  相似文献   

13.
A novel yeast species within the Metschnikowiaceae is described based on a strain from the sugarcane (Saccharum sp.) rhizoplane of an organically managed farm in Rio de Janeiro, Brazil. The D1/D2 domain of the large subunit ribosomal RNA gene sequence analysis showed that the closest related species were Candida tsuchiyae with 86.2% and Candida thailandica with 86.7% of sequence identity. All three are anamorphs in the Clavispora opuntiae clade. The name Candida middelhoveniana sp. nov. is proposed to accommodate this highly divergent organism with the type strain Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (IMUFRJ) 51965T (=Centraalbureau voor Schimmelcultures (CBS) 12306T, Universidade Federal de Minas Gerais (UFMG)-70T, DBVPG 8031T) and the GenBank/EMBL/DDBJ accession number for the D1/D2 domain LSU rDNA sequence is FN428871. The Mycobank deposit number is MB 519801.  相似文献   

14.
An agarolytic bacterium, designated as strain M5cT, was isolated from sea sand in Jeju Island, Korea. This isolate was Gram-negative, positive for catalase and oxidase, rod and motile by means of monotrichous flagella. Strain M5cT has translucent or dark ivory colonies, forms a dent on an agar plate under colonies, and grows in the presence of 1–12% (w/v) NaCl and at 10–37°C. This isolate hydrolyzes agar, alginic acid, carboxymethyl (CM)-cellulose and starch. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain M5cT can be considered as a species within the genus Gilvimarinus, being most closely related to Gilvimarinus chinensis QM42T, with a 16S rRNA gene sequence similarity of 95.6%. The major cellular fatty acids were C16:1ω7c and/or iso-C15:0 2OH (33.5%), C16:0 (26.5%) and C18:1ω7c (14.1%). The DNA G+C content was 53.8 mol%. Based on these polyphasic data, strain M5cT should be classified as a novel species, for which the name Gilvimarinus agarilyticus sp. nov. is proposed. The type strain for the novel species is M5cT (= KCTC 23325T = NCAIM B 02425T).  相似文献   

15.
Twelve strains representing five novel yeast species were isolated from natural samples distributed in mountain areas in Taiwan during 2007 and 2009. Sequence analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene revealed that these species are members of the Cyberlindnera clade. These five new species have a greater than 1% difference from their closest relatives in the sequences of the D1/D2 domain of the LSU rRNA gene and were well separated from their closest relatives in terms of physiological characteristics. Moreover, a sexual state could not be found in these five novel yeast species. Therefore, the scientific names of Candida maesa sp. nov. (type strain GJ8L01T), Candida takata sp. nov. (type strain EN25S01T), Candida taoyuanica sp. nov. (type strain GY15S07T), Candida hungchunana sp. nov. (type strain NC3W71T) and Candida stauntonica sp. nov. (type strain GY13L05T) were proposed to accommodate these yeasts.  相似文献   

16.
Lingfei Xu  Yanmin Du 《BioControl》2012,57(3):451-461
The yeast antagonist Candida guilliermondii and ultraviolet-C (UV-C) treatment were investigated for controlling infection following artificial inoculation with Penicillium expansum or Botrytis cinerea, or natural infection in pear fruit stored at 20°C. Applied separately, both C. guilliermondii and UV-C (5 kJ m−2) effectively inhibited decay caused by P. expansum or B. cinerea, and natural infection. The combination of C. guilliermondii and UV-C showed better control efficacy. Application of UV-C did not affect the growth of C. guilliermondii in pear fruit wounds, while UV-C induced a significant increase in the activities of chitinase, β-1,3-glucanase, catalase and peroxidase in pear fruit. The mechanism by which UV-C enhanced the biocontrol efficacy of C. guilliermondii may be related to the elicitation of defense responses in pear fruit. The combination of C. guilliermondii and UV-C radiation could be a promising method for the control of P. expansum and B. cinerea in pear fruit.  相似文献   

17.
An obligately anaerobic, spore-forming, acidophilic sulfate-reducing bacterium, strain SJ4T, was isolated from an acid mining effluent decantation pond sediment sample (pH around 3.0). Cells were Gram negative, non-motile, curved rods occurring singly. Strain SJ4T grew at pH 3.6–5.5 with an optimum at pH 5.2. Strain SJ4T utilized H2, lactate, pyruvate, glycerol, glucose, and fructose as electron donors. Lactate and glucose were weakly used. Sulfate was used as electron acceptors, but not sulfite, elemental sulfur, arsenate (V), and fumarate. The G + C content of genomic DNA was 42.3 mol% (HPLC). 16S rRNA gene sequence analysis indicated that strain SJ4T belonged to the genus Desulfosporosinus within the family Peptococcaceae in the phylum Firmicutes. The level of 16S rRNA gene sequence similarity with other Desulfosporosinus species was 94.7–96.2%, D. orientis DSM 765T (similarity of 96.2%) and D. auripigmenti DSM 13351T (similarity of 95%) being its closest relatives. DNA–DNA relatedness values with D. orientis and D. auripigmenti were 16.5 and 31.8%, respectively. On the basis of phenotypic, phylogenetic, and genetic characteristics, strain SJ4T represents a novel species within the genus Desulfosporosinus, for which the name Desulfosporosinus acidiphilus sp. nov. is proposed. The type strain is SJ4T (=DSM 22704T = JCM 16185T).  相似文献   

18.
A new yeast species, Kazachstania wufongensis, is proposed in this paper based on six strains isolated from soil in Taiwan. The species may produce one to four ellipsoidal ascospores in each ascus, directly transformed from diploid cells. Genus assignment and distinction of the species from other recognized species of Kazachstania is based on morphological and physiological characteristics, and on phylogenetic analysis of nucleotide sequences of the D1/D2 domains of the large subunit (LSU) rRNA gene. Sequence analysis of the D1/D2 domains of the LSU rRNA gene reveals that K. wufongensis is a member of the Kazachstania exigua complex, and its phylogenetically closest relatives are K. exigua, K. barnettii, K. bulderi, and K. turicensis. The species can be further differentiated from the other phylogenetically related species based on internal transcribed spacer sequence and electrophoretic karyotype. Therefore, the new species Kazachstania wufongensis sp. nov. is proposed. The type strain of this new species, which was isolated from forest soil in Wufong, Hsinchu, Taiwan, is FN21S03T (=CBS 10886T = BCRC 23138T).  相似文献   

19.
Relative Incidence of Ascomycetous Yeasts in Arctic Coastal Environments   总被引:1,自引:0,他引:1  
Previous studies of fungi in polar environments have revealed a prevalence of basidiomycetous yeasts in soil and in subglacial environments of polythermal glaciers. Ascomycetous yeasts have rarely been reported from extremely cold natural environments, even though they are known contaminants of frozen foods. Using media with low water activity, we have isolated various yeast species from the subglacial ice of four glaciers from the coastal Arctic environment of Kongsfjorden, Spitzbergen, including Debaryomyces hansenii and Pichia guillermondii, with counts reaching 104 CFU L−1. Together with the basidiomycetes Cryptococcus liquefaciens and Rhodotorula mucilaginosa, these yeasts represent the stable core of the subglacial yeast communities. Other glacial ascomycetous species isolated included Candida parapsilosis and a putative new species that resembles Candida pseudorugosa. The archiascomycete Protomyces inouyei has seldom been detected anywhere in the world but was here recovered from ice in a glacier cave. The glacier meltwater contained only D. hansenii, whereas the seawater contained D. hansenii, Debaryomyces maramus, Pichia guilliermondii, what appears to represent a novel species resembling Candida galli and Metschnikowia bicuspidata. Only P. guilliermondii was isolated from sea ice, while snow/ice in the fjord tidal zone included C. parapsilosis, D. hansenii, P. guilliermondii and Metschnikowia zobellii. All of these isolated strains were characterized as psychrotolerant and xero/halotolerant, with the exception of P. inouyei.  相似文献   

20.
A Gram-staining positive, endospore-forming, motile and rod-shaped bacterial strain, BR-29T, was isolated from soil from west coast of the Korean peninsula, and its taxonomic position was investigated by a polyphasic study. Strain BR-29T grew optimally at around pH 7.5, at 30°C and in the presence of 0.5% (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain BR-29T fell into a clade comprising the type strains of Cohnella species, with which it exhibited 16S rRNA gene sequence similarity values of 92.8–96.4%. Strain BR-29T contained a cell wall peptidoglycan based on meso-diaminopimelic acid and MK-7 as the predominant menaquinone. The major fatty acids were anteiso-C15:0, C16:0 and iso-C16:0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, lysylphosphatidylglycerol and two unidentified phospholipids; a minor amount of phosphatidylglycerol was present. The DNA G+C content was 54.9 mol%. Strain BR-29T could be differentiated from phylogenetically related Cohnella species by differences in phenotypic characteristics. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain BR-29T represents a novel species of the genus Cohnella, for which the name Cohnella boryungensis sp. nov., is proposed. The type strain is BR-29T (= KCTC 13735T = CCUG 59598T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号