首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human fibrinogen (Fg) binds to surface proteins expressed by many pathogenic bacteria and has been implicated in different host-pathogen interactions, but the role of bound Fg remains unclear. Here, we analyse the role of Fg bound to Streptococcus pyogenes M protein, a major virulence factor that confers resistance to phagocytosis. Studies of the M5 system showed that a chromosomal mutant lacking the Fg-binding region was completely unable to resist phagocytosis, indicating that bound Fg plays a key role in virulence. Deposition of complement on S. pyogenes occurred via the classical pathway even under non-immune conditions, but was blocked by M5-bound Fg, which reduced the amount of classical pathway C3 convertase on the bacterial surface. This property of M protein-bound Fg may explain its role in phagocytosis resistance. Previous studies have shown that many M proteins do not bind Fg, but interfere with complement deposition and phagocytosis by recruiting human C4b-binding protein (C4BP), an inhibitor of the classical pathway. Thus, all M proteins may share ability to recruit a human plasma protein, Fg or C4BP, which inhibits complement deposition via the classical pathway. Our data identify a novel function for surface-bound Fg and allow us to propose a unifying mechanism by which M proteins interfere with innate immunity.  相似文献   

2.
Fibronectin binding to a Streptococcus pyogenes strain.   总被引:20,自引:1,他引:20       下载免费PDF全文
In previous studies, Staphylococcus aureus has been shown to bind fibronectin (P. Kuusela, Nature (London) 276:718-720, 1978), an interaction that may be important in bacterial attachment and opsonization. Recently some strains of streptococci of serological groups A, C, and G were also found to bind fibronectin. The binding to one selected strain of Streptococcus pyogenes has been characterized here. The binding of [125I]fibronectin to streptococcal cells resembles that to staphylococcal cells and was found to be time dependent, functionally irreversible, and specific in the sense that unlabeled proteins other than fibronectin did not block binding. Bacteria incubated with proteases largely lost their ability to bind fibronectin, and material released from the streptococci by a brief trypsin digestion contained active fibronectin receptors. This material inhibited the binding of [125I]fibronectin to the streptococci. The inhibitory activity was adsorbed on a column of fibronectin-Sepharose but not on a column of unsubstituted Sepharose 4B or egg albumin Sepharose. The receptor appeared to be a protein nature since the inhibitory activity of the trypsinate was destroyed by papain and was not absorbed on a column containing monoclonal antibodies directed against lipoteichoic acid bound to protein A-Sepharose. Binding sites in fibronectin for streptococci and staphylococci, respectively, were localized by analyzing the ability of isolated fragments to inhibit [125I]fibronectin binding to bacteria and by adsorbing 125I-labeled tryptic fragments with staphylococcal and streptococcal cells. Both species of bacteria appeared to preferentially bind a fragment (Mr = approximately 25,000) originating from the N-terminal region of the protein. In addition, streptococci also bound a slightly smaller fragment (Mr = approximately 23,000). Fibronectin receptors solubilized from either streptococci or staphylococci inhibited the binding of fibronectin to both species of bacteria.  相似文献   

3.
Specific binding of collagen type IV to Streptococcus pyogenes   总被引:5,自引:0,他引:5  
Many strains of Streptococcus pyogenes are capable of binding type IV collagen. In the present study, all 50 S. pyogenes strains isolated from patients with acute glomerulonephritis showed high or moderate affinity for radiolabelled type IV collagen. A majority of strains of other sources, such as reference strains of various M-types and strains isolated from patients with pharyngeal infections also bound type IV collagen; however, a number of weak binders or non-binders were found among those. The collagen type IV binding component(s) on S. pyogenes were susceptible to proteinase K digestion, partially sensitive to trypsin but insensitive to pepsin treatment at pH 5.5. According to tests with three M-positive strains and their M-negative derivatives, the binding was not dependent on M-protein. The binding was saturable with time and inhibited by unlabelled type IV collagen. Partially inhibition was found with type II collagen, gelatin and fibrinogen but not with a number of other serum proteins.  相似文献   

4.
Fibronectin-binding protein I (SfbI) from Streptococcus pyogenes plays a key role in bacterial adhesion to, and invasion of, eukaryotic cells. In addition, SfbI exhibits a considerable potential as mucosal adjuvant and can trigger polyclonal activation of B cells. Here, we report that SfbI is also capable of binding human IgG in a nonimmune fashion. SfbI was reactive with IgG1, IgG2, IgG3, and IgG4 isotypes (type IIo IgG-binding profile). The affinity constant (Kd) of the SfbI-IgG interaction was in the range of 1-2 x 10(-5) M. Further studies demonstrated that the SfbI binding was mediated by the Fc component of the IgG molecule. Experiments performed using purified recombinant proteins spanning different domains of SfbI showed that the IgG-binding activity was restricted to the fibronectin-binding domains, and in particular to the fibronectin-binding repeats. Finally, the presence of recombinant SfbI resulted in an impairment of both phagocytosis of IgG-coated RBCs and Ab-dependent cell cytotoxicity by macrophages. These results demonstrated for the first time that, in addition to its major role during the colonization process, SfbI may also favor bacterial immune evasion after the onset of the infection by interfering with host clearance mechanisms.  相似文献   

5.
6.
7.
8.
Streptococcus pyogenes is a major bacterial pathogen and a potent inducer of inflammation causing plasma leakage at the site of infection. A combination of label-free quantitative mass spectrometry-based proteomics strategies were used to measure how the intracellular proteome homeostasis of S. pyogenes is influenced by the presence of human plasma, identifying and quantifying 842 proteins. In plasma the bacterium modifies its production of 213 proteins, and the most pronounced change was the complete down-regulation of proteins required for fatty acid biosynthesis. Fatty acids are transported by albumin (HSA) in plasma. S. pyogenes expresses HSA-binding surface proteins, and HSA carrying fatty acids reduced the amount of fatty acid biosynthesis proteins to the same extent as plasma. The results clarify the function of HSA-binding proteins in S. pyogenes and underline the power of the quantitative mass spectrometry strategy used here to investigate bacterial adaptation to a given environment.  相似文献   

9.
Binding of the group A streptococcus (GAS) to respiratory epithelium is mediated by the fibronectin (Fn)-binding adhesin, protein F1. Previous studies have suggested that certain GAS strains express Fn-binding proteins that are different from protein F1. In this study, we have cloned, sequenced, and characterized a gene ( prtF2 ) from GAS strain 100076 encoding a novel Fn-binding protein, termed protein F2. Insertional inactivation of prtF2 in strain 100076 abolishes its high-affinity Fn binding. prtF2 -related genes exist in most GAS strains that lack prtF1 (encoding protein F1) but bind Fn with high affinity. These observations suggest that protein F2 is a major Fn-binding protein in GAS. Protein F2 is highly homologous to Fn-binding proteins from Streptococcus dysgalactiae and Strep-tococcus equisimilis , particularly in its carboxy-terminal portion. Two domains are responsible for Fn binding by protein F2. One domain (FBRD) consists of three consecutive repeats, whereas the other domain (UFBD) resides on a non-repeated stretch of approximately 100 amino acids and is located 100 amino acids amino-terminal of FBRD. Each of these domains is capable of binding Fn when expressed as a separate protein. In strain 100076, protein F2 activity is regulated in response to alterations in the concentration of atmospheric oxygen.  相似文献   

10.
The 49-residue functional upstream domain (FUD) of Streptococcus pyogenes F1 adhesin interacts with fibronectin (FN) in a heretofore unknown manner that prevents assembly of a FN matrix. Biotinylated FUD (b-FUD) bound to adsorbed FN or its recombinant N-terminal 70-kDa fibrin- and gelatin-binding fragment (70K). Binding was blocked by FN or 70K, but not by fibrin- or gelatin-binding subfragments of 70K. Isothermal titration calorimetry showed that FUD binds with K(d) values of 5.2 and 59 nM to soluble 70K and FN, respectively. We tested sets of FUD mutants and epitope-mapped monoclonal antibodies (mAbs) for ability to compete with b-FUD for binding to FN or to block FN assembly by cultured fibroblasts. Deletions or alanine substitutions throughout FUD caused loss of both activities. mAb 4D1 to the (2)FNI module had little effect, whereas mAb 7D5 to the (4)FNI module in the fibrin-binding region, 5C3 to the (9)FNI module in the gelatin-binding region, or L8 to the G-strand of (1)FNIII module adjacent to (9)FNI caused loss of binding of b-FUD to FN and decreased FN assembly. Conversely, FUD blocked binding of 7D5, 5C3, or L8, but not of 4D1, to FN. Circular dichroism indicated that FUD binds to 70K by β-strand addition, a possibility supported by modeling based on crystal structures of peptides bound to (2)FNI-(5)FNI of the fibrin-binding domain and (8)FNI-(9)FNI of the gelatin-binding domain. Thus, the interaction likely involves an extensive anti-parallel β-zipper in which FUD interacts with the E-strands of (2)FNI-(5)FNI and (8)FNI-(9)FNI.  相似文献   

11.
12.
M protein is an important virulence determinant in Streptococcus pyogenes, but the amounts of M protein in various strains of the species remain to be elucidated. To assess the amount of M protein in strains of each emm genotype, dot blot analysis was performed on 141 clinically isolated strains. Among the cell membrane-associated proteins, M protein was present in greater quantities in the emm1, 3, and 6 strains than in the other emm strains. In addition three strains, one each of the emm1, 3, and 6 types, showed prolific M protein production (M protein-high producers). These three emm genotypes are frequently isolated in clinical practice. Sequencing of the csrRS gene, one of the two-component signal transduction systems implicated in virulence, was performed on 25 strains bearing different amounts of M protein. CsrS mutations, in contrast to CsrR protein, were detected in 11 strains. The M protein-high producer strain of emm1 type carried two amino acid substitutions, whereas the other three emm1 strains carried only one substitution each. The M protein-high producer expressed its emm gene more strongly than the corresponding M protein-low producer did according to TaqMan RT-PCR. These observations suggest that the accumulation of amino acid substitutions in CsrS protein may contribute, at least in part, to the large amount of M protein production seen in several emm genotypes.  相似文献   

13.
Protein H, a molecule expressed at the surface of some strains of Streptococcus pyogenes, has affinity for the constant (lgGFc) region of immunoglobulin (lg) G. In absorption experiments with human plasma, protein H–sepharose could absorb not only lgG but also albumin from plasma. The affinity constant for the reaction between albumin and protein H was 7.8 × 109M−1, which is higher than the affinity between lgG and protein H (Ka= 1.6 × 109 M−1). Fragments of protein H were generated with deletion plasmids and polymerase chain reaction (PCR) technology. Using these fragments in various protein–protein interaction assays, the binding of albumin was mapped to three repeats (C1–C3) in the C-terminal half of protein H. On the albumin molecule, the binding site for protein H was found to overlap the site for protein G, another albumin- and lgGFc-binding bacterial surface protein. Aiso lgGFc-binding could be mapped with the protein H fragments and the region was found N-terminally of the C repeats. A synthetic peptide (25 amino acid residues long) based on a sequence in this region was shown to inhibit the binding of protein H to immobilized lgG or lgGFc. This sequence was not found in previously described lgGFc-binding proteins. However, two other cell surface proteins of S. pyogenes exhibited highly homologous regions. The results identify lgGFc- and albumin binding regions of protein H and further define and emphasize the convergent evolution among bacterial surface proteins interacting with human plasma proteins.  相似文献   

14.
Serum opacity factor (SOF) is a unique multifunctional virulence determinant expressed at the surface of Streptococcus pyogenes and has been shown to elicit protective immunity against GAS infection in a murine challenge model. SOF consists of two distinct domains with different binding capacities: an N-terminal domain that binds apolipoprotein AI and a C-terminal repeat domain that binds fibronectin and fibrinogen. The capacity of SOF to opacify serum by disrupting the structure of high density lipoproteins may preclude its use as a vaccine antigen in humans. This study generated mutant forms of recombinant SOF with reduced (100-fold) or abrogated opacity factor (OF) activity, for use as vaccine antigens. However, alterations introduced into the N-terminal SOF peptide (SOFDeltaFn) by mutagenesis to abrogate OF activity, abolish the capacity of SOF to protect against lethal systemic S. pyogenes challenge in a murine model. Mutant forms of purified SOFDeltaFn peptide were also used to assess the contribution of OF activity to the pathogenic processes of cell adhesion and cell invasion. Using latex beads coated with full-length SOF, SOFDeltaFn peptide, or a peptide encompassing the C-terminal repeats (FnBD), we demonstrate that adhesion to HEp-2 cells is mediated by both SOFDeltaFn and FnBD. The HEp-2 cell binding displayed by the N-terminal SOFDeltaFn peptide is independent of OF activity. We demonstrate that while the N terminus of SOF does not directly mediate intracellular uptake by epithelial cells, this domain enhances epithelial cell uptake mediated by full-length SOF, in comparison to the FnBD alone.  相似文献   

15.
16.
Streptococcus pyogenes of the M1 serotype is commonly associated with large outbreaks of invasive streptococcal infections and development of streptococcal toxic shock syndrome (STSS). The pathogenesis behind these infections is believed to involve bacterial superantigens that induce potent inflammatory responses, but the reason why strains of the M1 serotype are over-represented in STSS is still not understood. In the present investigation, we show that a highly purified soluble form of the M1 protein from S. pyogenes , which lacks the membrane-spanning region, is a potent inducer of T cell proliferation and release of Th1 type cytokines. M1 protein-evoked T cell proliferation was HLA class II-dependent but not MHC-restricted, did not require intracellular processing and was Vβ-restricted. Extensive mass spectrometry studies indicated that there were no other detectable proteins in the preparation. Taken together, our data demonstrate that soluble M1 protein is a novel streptococcal superantigen, which likely contributes to the excessive T cell activation and hyperinflammatory response seen in severe invasive streptococcal infections.  相似文献   

17.
During the course of infection, the common human pathogen Streptococcus pyogenes encounters plasma. We show that plasma causes S. pyogenes to rapidly remodel its cellular metabolism and virulence pathways. We also identified a variant of the major virulence factor, M1 protein, lacking 13 amino acids at the NH(2)-terminus in bacteria grown with plasma. The pronounced effect of plasma on protein expression, suggests this is an important adaptive mechanism with implications for S. pyogenes pathogenicity.  相似文献   

18.
Some isolates of the significant human pathogen Streptococcus pyogenes, including virulent strains of the M1 serotype, secrete protein SIC. This molecule, secreted in large quantities, interferes with complement function. As a result of natural selection, SIC shows a high degree of variation. Here we provide a plausible explanation for this variation and the fact that strains of the M1 serotype are the most frequent cause of severe invasive S. pyogenes infections. Thus, protein SIC was found to inactivate human neutrophil alpha-defensin and LL-37, two major antibacterial peptides involved in bacterial clearance. This inactivation protected S. pyogenes against the antibacterial effect of the peptides. Moreover, SIC isolated from S. pyogenes of the M1 serotype was more powerful in this respect than SIC variants from strains of M serotypes 12 and 55, serotypes rarely connected with invasive infections.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号