首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ectoine and hydroxyectoine are well-recognized members of the compatible solutes and are widely employed by microorganisms as osmostress protectants. The EctABC enzymes catalyze the synthesis of ectoine from the precursor L-aspartate-β-semialdehyde. A subgroup of the ectoine producers can convert ectoine into 5-hydroxyectoine through a region-selective and stereospecific hydroxylation reaction. This compatible solute possesses stress-protective and function-preserving properties different from those of ectoine. Hydroxylation of ectoine is carried out by the EctD protein, a member of the non-heme-containing iron (II) and 2-oxoglutarate-dependent dioxygenase superfamily. We used the signature enzymes for ectoine (EctC) and hydroxyectoine (EctD) synthesis in database searches to assess the taxonomic distribution of potential ectoine and hydroxyectoine producers. Among 6428 microbial genomes inspected, 440 species are predicted to produce ectoine and of these, 272 are predicted to synthesize hydroxyectoine as well. Ectoine and hydroxyectoine genes are found almost exclusively in Bacteria. The genome context of the ect genes was explored to identify proteins that are functionally associated with the synthesis of ectoines; the specialized aspartokinase Ask_Ect and the regulatory protein EctR. This comprehensive in silico analysis was coupled with the biochemical characterization of ectoine hydroxylases from microorganisms that can colonize habitats with extremes in salinity (Halomonas elongata), pH (Alkalilimnicola ehrlichii, Acidiphilium cryptum), or temperature (Sphingopyxis alaskensis, Paenibacillus lautus) or that produce hydroxyectoine very efficiently over ectoine (Pseudomonas stutzeri). These six ectoine hydroxylases all possess similar kinetic parameters for their substrates but exhibit different temperature stabilities and differ in their tolerance to salts. We also report the crystal structure of the Virgibacillus salexigens EctD protein in its apo-form, thereby revealing that the iron-free structure exists already in a pre-set configuration to incorporate the iron catalyst. Collectively, our work defines the taxonomic distribution and salient biochemical properties of the ectoine hydroxylase protein family and contributes to the understanding of its structure.  相似文献   

2.
Strain CHR63 is a salt-sensitive mutant of the moderately halophilic wild-type strain Halomonas elongata DSM 3043 that is affected in the ectoine synthase gene (ectC). This strain accumulates large amounts of Nγ-acetyldiaminobutyrate (NADA), the precursor of ectoine (D. Cánovas, C. Vargas, F. Iglesias-Guerra, L. N. Csonka, D. Rhodes, A. Ventosa, and J. J. Nieto, J. Biol. Chem. 272:25794–25801, 1997). Hydroxyectoine, ectoine, and glucosylglycerate were also identified by nuclear magnetic resonance (NMR) as cytoplasmic organic solutes in this mutant. Accumulation of NADA, hydroxyectoine, and ectoine was osmoregulated, whereas the levels of glucosylglycerate decreased at higher salinities. The effect of the growth stage on the accumulation of solutes was also investigated. NADA was purified from strain CHR63 and was shown to protect the thermolabile enzyme rabbit muscle lactate dehydrogenase against thermal inactivation. The stabilizing effect of NADA was greater than the stabilizing effect of ectoine or potassium diaminobutyrate. A 1H NMR analysis of the solutes accumulated by the wild-type strain and mutants CHR62 (ectA::Tn1732) and CHR63 (ectC::Tn1732) indicated that H. elongata can synthesize hydroxyectoine by two different pathways—directly from ectoine or via an alternative pathway that converts NADA into hydroxyectoine without the involvement of ectoine.  相似文献   

3.
4.
Compatible solutes are key for the ability of halophilic bacteria to resist high osmotic stress. They have received wide attention from researchers for their excellent osmotic protection properties. Hydroxyectoine is a particularly important compatible solute, but its production by microbes faces several challenges, including low titer/yield, the presence of the byproduct ectoine, and the requirement of high salinity. Here, we aimed to metabolically engineer Escherichia coli to efficiently produce hydroxyectoine in the absence of osmotic stress without accumulating the byproduct ectoine. First, combinatorial optimization of the expression strength of key genes in the ectoine synthesis module and hydroxyectoine synthesis module was conducted. After optimization of the expression of these genes, 12.12 g/L hydroxyectoine and 0.24 g/L ectoine were obtained at 36 h in shake-flask fermentation with the addition of the co-substrate α-ketoglutarate. Further optimization of the addition of α-ketoglutarate achieved the sole production of hydroxyectoine (i.e., no ectoine accumulation), indicating that the supply of α-ketoglutarate is critically important for sole hydroxyectoine production. Finally, quorum sensing-based auto-regulation of intracellular α-ketoglutarate pool was implemented as an alternative to α-ketoglutarate addition by coupling the expression of sucA with the esaI/esaR circuit, which led to 14.93 g/L hydroxyectoine with a unit cell yield of 1.678 g/g and no ectoine accumulation in the absence of osmotic stress. This is the highest reported titer of sole hydroxyectoine production under salinity-free fermentation to date.  相似文献   

5.
6.
7.
Using transposon mutagenesis we generated a salt-sensitive mutant of the halophilic eubacterium Halomonas elongata impaired in the biosynthesis of the compatible solute ectoine. HPLC determinations of the cytoplasmic solute content showed the accumulation of a biosynthetic precursor of ectoine, l-2,4-diaminobutyric acid. Ectoine and hydroxyectoine were not detectable. This mutant failed to grow in minimal medium with NaCl concentrations exceeding 4%. However, when supplemented with organic osmolytes, the ability to grow in high-salinity medium (15% and higher) was regained. We cloned and sequenced the regions flanking the transposon insertion in the H. elongata chromosome. Sequence comparisons with known proteins revealed significant similarity of the mutated gene to the l-2,4-diaminobutyric acid acetyltransferase from the ectoine biosynthetic pathway in Marinococcus halophilus. Analysis of a PCR product demonstrated that the ectoine biosynthetic genes (ectABC) follow the same order as in M. halophilus.  相似文献   

8.
Mycobacterium smegmatis is a commonly used mycobacterial model system. Here, we show that M. smegmatis protects itself against elevated salinity by synthesizing ectoine and hydroxyectoine and characterize the phenotype of a nonproducing mutant. This is the first analysis of M. smegmatis halotolerance and of the molecular mechanism that supports it.  相似文献   

9.
The formation of hydroxyectoine in the industrial ectoine producer Halomonas elongata was improved by the heterologous expression of the ectoine hydroxylase gene, thpD, from Streptomyces chrysomallus. The efficient conversion of ectoine to hydroxyectoine was achieved by the concerted regulation of thpD by the H. elongata ectA promoter.  相似文献   

10.
Hydroxyectoine overproduction by the natural producer Chromohalobacter salexigens is presented in this study. Genetically engineered strains were constructed that at low salinity coexpressed, in a vector derived from a native plasmid, the ectoine (ectABC) and hydroxyectoine (ectD) genes under the control of the ectA promoter, in a temperature-independent manner. Hydroxyectoine production was further improved by increasing the copies of ectD and using a C. salexigens genetic background unable to synthesize ectoines.  相似文献   

11.
12.
13.
14.
Five different compatible solutes, sucrose, trehalose, hydroxyectoine, ectoine, and glycine betaine, were investigated for their protective effect on Escherichia coli K12 and E. coli NISSLE 1917 during drying and subsequent storage. Two different drying techniques, freeze-drying and air-drying, were compared. The highest survival rate was observed when the non-reducing disaccharides sucrose (for E. coli K12) and trehalose (for E. coli NISSLE 1917) were added. The two tetrahydropyrimidines, hydroxyectoine and ectoine, gave protection to freeze-dried E. coli NISSLE 1917 whereas E. coli K12 was protected only by hydroxyectoine. Glycine betaine seemed to be harmful for both strains of E. coli with both drying techniques. Air0drying gave much better survival rates than freeze-drying. The two strains of E. coli differed in their ability to take up compatible solutes.  相似文献   

15.
The compatible solutes ectoine and hydroxyectoine are widely produced by bacteria as protectants against osmotic and temperature stress. l-Aspartate-beta-semialdehyde is used as the precursor molecule for ectoine/hydroxyectoine biosynthesis that is catalyzed by the EctABCD enzymes. l-Aspartate-beta-semialdehyde is a central intermediate in different biosynthetic pathways and is produced from l-aspartate by aspartokinase (Ask) and aspartate-semialdehyde-dehydrogenase (Asd). Ask activity is typically stringently regulated by allosteric control to avoid gratuitous synthesis of aspartylphosphate. Many organisms have evolved multiple forms of aspartokinase, and feedback regulation of these specialized Ask enzymes is often adapted to the cognate biochemical pathways. The ectoine/hydroxyectoine biosynthetic genes (ectABCD) are followed in a considerable number of microorganisms by an askgene (ask_ect), suggesting that Ask_Ect is a specialized enzyme for this osmoadaptive biosynthetic pathway. However, none of these Ask_Ect enzymes have been functionally characterized. Pseudomonas stutzeri A1501 synthesizes both ectoine and hydroxyectoine in response to increased salinity, and it possesses two Ask enzymes: Ask_Lys and Ask_Ect. We purified both Ask enzymes and found significant differences with regard to their allosteric control: Ask_LysC was inhibited by threonine and in a concerted fashion by threonine and lysine, whereas Ask_Ect showed inhibition only by threonine. The ectABCD_askgenes from P. stutzeri A1501 were cloned and functionally expressed in Escherichia coli, and this led to osmostress protection. An E. colistrain carrying the plasmid-based ectABCD_askgene cluster produced significantly more ectoine/hydroxyectoine than a strain expressing the ectABCDgene cluster alone. This finding suggests a specialized role for Ask_Ect in ectoine/hydroxyectoine biosynthesis.  相似文献   

16.
Compatible solutes are small, soluble organic compounds that have the ability to stabilise proteins against various stress conditions. In this study, the protective effect of ectoines against pH stress is examined using a recombinant xylanase from Bacillus halodurans as a model. Ectoines improved the enzyme stability at low (4.5 and 5.0) and high pH (11 and 12); stabilisation effect of hydroxyectoine was superior to that of ectoine and trehalose. In the presence of hydroxyectoine, residual activity (after 10 h heating at 50 °C) increased from about 45 to 86 % at pH 5 and from 33 to 89 % at pH 12. When the xylanase was incubated at 65 °C for 5 h with 50 mM hydroxyectoine at pH 10, about 40 % of the original activity was retained while no residual activity was detected in the absence of additives or in the presence of ectoine or trehalose. The xylanase activity was slightly stimulated in the presence of 25 mM ectoines and then gradually decreased with increase in ectoines concentration. The thermal unfolding of the enzyme in the presence of the compatible solutes showed a modest increase in denaturation temperature but a larger increase in calorimetric enthalpy.  相似文献   

17.
Strain CHR63 is a salt-sensitive mutant of the moderately halophilic wild-type strain Halomonas elongata DSM 3043 that is affected in the ectoine synthase gene (ectC). This strain accumulates large amounts of Ngamma-acetyldiaminobutyrate (NADA), the precursor of ectoine (D. Cánovas, C. Vargas, F. Iglesias-Guerra, L. N. Csonka, D. Rhodes, A. Ventosa, and J. J. Nieto, J. Biol. Chem. 272:25794-25801, 1997). Hydroxyectoine, ectoine, and glucosylglycerate were also identified by nuclear magnetic resonance (NMR) as cytoplasmic organic solutes in this mutant. Accumulation of NADA, hydroxyectoine, and ectoine was osmoregulated, whereas the levels of glucosylglycerate decreased at higher salinities. The effect of the growth stage on the accumulation of solutes was also investigated. NADA was purified from strain CHR63 and was shown to protect the thermolabile enzyme rabbit muscle lactate dehydrogenase against thermal inactivation. The stabilizing effect of NADA was greater than the stabilizing effect of ectoine or potassium diaminobutyrate. A (1)H NMR analysis of the solutes accumulated by the wild-type strain and mutants CHR62 (ectA::Tn1732) and CHR63 (ectC::Tn1732) indicated that H. elongata can synthesize hydroxyectoine by two different pathways-directly from ectoine or via an alternative pathway that converts NADA into hydroxyectoine without the involvement of ectoine.  相似文献   

18.
19.
AIMS: To investigate the catabolism of ectoine and hydroxyectoine, which are the major compatible solutes synthesized by Chromohalobacter salexigens. METHODS AND RESULTS: Growth curves performed in M63 minimal medium with low (0.75 mol l(-1) NaCl), optimal (1.5 mol l(-1) NaCl) or high (2.5 mol l(-1) NaCl) salinity revealed that betaine and ectoines were used as substrate for growth at optimal and high salt. Ectoine transport was maximal at optimal salinity, and showed 3- and 1.5-fold lower values at low and high salinity respectively. The salt-sensitive ectA mutant CHR62 showed an ectoine transport rate 6.8-fold higher than that of the wild type. Incubation of C. salexigens in a mixture of glucose and ectoine resulted in a biphasic growth pattern. However, CO(2) production due to ectoine catabolism was lower, but not completely abolished, in the presence of glucose. When used as the sole carbon source, glycine betaine effectively inhibited ectoine and hydroxyectoine synthesis at any salinity. CONCLUSIONS: The catabolic pathways for ectoine and hydroxyectoine in C. salexigens operate at optimal and high (although less efficiently) salinity. Endogenous ectoine(s) may repress its own transport. Ectoine utilization was only partially repressed by glucose. Betaine, when used as carbon source, suppresses synthesis of ectoines even under high osmolarity conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is a previous step to the subsequent isolation and manipulation of the catabolic genes, so as to generate strains with enhanced production of ectoine and hydroxyectoine.  相似文献   

20.
To understand the mechanisms of ectoine-induced osmoprotection in Sinorhizobium meliloti, a proteomic examination of S. meliloti cells grown in minimal medium supplemented with ectoine was undertaken. This revealed the induction of 10 proteins. The protein products of eight genes were identified by using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Five of these genes, with four other genes whose products were not detected on two-dimensional gels, belong to the same gene cluster, which is localized on the pSymB megaplasmid. Four of the nine genes encode the characteristic components of an ATP-binding cassette transporter that was named ehu, for ectoine/hydroxyectoine uptake. This transporter was encoded by four genes (ehuA, ehuB, ehuC, and ehuD) that formed an operon with another gene cluster that contains five genes, named eutABCDE for ectoine utilization. On the basis of sequence homologies, eutABCDE encode enzymes with putative and hypothetical functions in ectoine catabolism. Analysis of the properties of ehuA and eutA mutants suggests that S. meliloti possesses at least one additional ectoine catabolic pathway as well as a lower-affinity transport system for ectoine and hydroxyectoine. The expression of ehuB, as determined by measurements of UidA activity, was shown to be induced by ectoine and hydroxyectoine but not by glycine betaine or by high osmolality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号