首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth kinetics of Lactobacillus acidophilus under ohmic heating   总被引:1,自引:0,他引:1  
Lactobacillus acidophilus OSU133 was inoculated into MRS broth in a fermenter vessel and incubated at 30, 35, or 45 degrees C with agitation. Incubation temperatures were attained by conventional or ohmic heating. An electrical current at low (15 V) or high (40 V) voltage was used to heat the culture directly during fermentations under ohmic heating. The growth parameters (lag period, minimum generation time, and maximum growth) and changes in pH were determined during fermentation. Metabolic activities (consumption of glucose and production of lactic acid and bacteriocin) were determined during fermentation at 35 degrees C under both heating methods. Lag period for L. acidophilus was affected appreciably by the method of heating, but the magnitude of these changes depended on the fermentation temperature. When fermentation was done at 30 degrees C, lag period decreased by 94% under low-voltage ohmic, compared with conventional, heating methods. Ohmic heating did not change the generation time significantly and caused slight, but significant (p < 0.01) decrease in maximum growth. Therefore, the electric current enhances the early stages, but it inhibits the late stages of growth. Ohmic, compared with conventional, heating resulted in higher final pH and lower bacteriocin activity in the fermented medium. However, ohmic heating at 35 degrees C had minimal effect on glucose utilization and lactic acid production by L. acidophilus. Results show that measurement of the electric current when ohmic heating is done at a constant voltage may be used in monitoring such fermentations. In conclusion, ohmic heating is potentially useful in certain applications related to fermented foods. (c) 1996 John Wiley & Sons, Inc.  相似文献   

2.
Bacillus subtilis spores were suspended in 0.1% NaCl solution (ca. 10(7) CFU/mL) and treated by conventional or ohmic heating under identical temperature histories. Temperatures tested were in the range of 88 to 99 degrees C. Survival curves and calculated D values showed significantly higher lethality for spores by ohmic than conventional heating. The z or Ea values corresponding to the two heating methods, however, were not significantly different. Spores of B. subtilis were suspended in nutrient broth and treated with conventional and ohmic heating through a single- or a double-stage treatment. In case of double-stage treatment, heating was interrupted by a 20 min of incubation at 37 degrees C to induce a Tyndallization effect. Spore inactivation during double-stage treatment was greater for ohmic than conventional heating. The enhanced spore inactivation by ohmic, compared with conventional, heating resulted from a greater rate of spore death during the first stage of heating and greater decrease in count of viable spores immediately after the incubation period that intervened the heating process. Thus it is concluded that spore inactivation during ohmic heating was primarily due to the thermal effect but there was an additional killing effect caused by the electric current.  相似文献   

3.
AIMS: The objectives of this study were to investigate the potential application of a low-amperage direct electric current as a non-thermal process for inactivation of Saccharomyces cerevisiae. METHODS AND RESULTS: Electric current was generated using a direct current power supply connected to a traditional electrochemical cell with two platinum electrodes immersed in conducting solution containing a population of S. cerevisiae. This treatment provoked inactivation of the yeast cells. The microbial destruction illustrated by D-values calculated from survival curves was shown to be proportional to the current amperage (i) (D varies from 1547 min to 140 min when i varies from 0.1 to 1 A, respectively). The efficacy of the treatment was shown to be better at pH < 7. Statistical analysis showed no significant effect (P > 0.05) of ionic strength on yeast lethality induced by electrolysis. CONCLUSIONS: The lethal effect of the electric treatment on S. cerevisiae in phosphate buffer was shown to be due to neither ohmic heating nor toxic hydrogen peroxide. A synergistic effect of temperature and electrolysis was observed when the temperature became lethal for the yeast. SIGNIFICANCE AND IMPACT OF THE STUDY: The method described for yeast lethality induced by electrolysis has potential for soft sterilization, particularly when combined with the synergistic effect of moderate heat.  相似文献   

4.
The effect of frequency of alternating current during ohmic heating on electrode corrosion, heating rate, inactivation of food-borne pathogens, and quality of salsa was investigated. The impact of waveform on heating rate was also investigated. Salsa was treated with various frequencies (60 Hz to 20 kHz) and waveforms (sine, square, and sawtooth) at a constant electric field strength of 12.5 V/cm. Electrode corrosion did not occur when the frequency exceeded 1 kHz. The heating rate of the sample was dependent on frequency up to 500 Hz, but there was no significant difference (P > 0.05) in the heating rate when the frequency was increased above 1 kHz. The electrical conductivity of the sample increased with a rise in the frequency. At a frequency of 60 Hz, the square wave produced a lower heating rate than that of sine and sawtooth waves. The heating rate between waveforms was not significantly (P > 0.05) different when the frequency was >500 Hz. As the frequency increased, the treatment time required to reduce Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium to below the detection limit (1 log CFU/g) decreased without affecting product quality. These results suggest that ohmic heating can be effectively used to pasteurize salsa and that the effect of inactivation is dependent on frequency and electrical conductivity rather than waveform.  相似文献   

5.
A new electro-optical (EO) approach was developed and applied to rapidly assay cell viability by using phage M13K07. Since phage M13K07 can replicate only in living bacteria and cannot replicate in the presence of inhibitors, the difference between the EO signals obtained in the presence and absence of the phage can be used as an important factor for evaluating cell viability. Variation in the electrophysical parameters of Escherichia coli XL-1 during its interaction with phage M13K07 was studied under exposure of the cells to various inhibitors of cellular metabolism. Significant changes in the EO signal were found during incubation of living E. coli cells with phage M13K07. At the same time, no changes were recorded during cell incubation with the phage after pretreatment of E. coli XL-1 cells with sodium azide, carbonyl cyanide 3-chlorophenyl hydrazone, chloramphenicol, and kanamycin. This finding can be explained by the decrease in the number of living cells in the culture after preliminary incubation with the chemical agents, and it was confirmed by colony counts by conventional plating onto solid LB medium before and after treatment of the cells with the inhibitors. The EO approach can be used as a rapid method for evaluation of the inhibitory effects of various chemical agents and drugs, and it has the potential for the study of the molecular mechanisms underlying cell death.  相似文献   

6.
The effect of electric field-induced ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in buffered peptone water (BPW) (pH 7.2) and apple juice (pH 3.5; 11.8 °Brix) was investigated in this study. BPW and apple juice were treated at different temperatures (55°C, 58°C, and 60°C) and for different times (0, 10, 20, 25, and 30 s) by ohmic heating compared with conventional heating. The electric field strength was fixed at 30 V/cm and 60 V/cm for BPW and apple juice, respectively. Bacterial reduction resulting from ohmic heating was significantly different (P < 0.05) from that resulting from conventional heating at 58°C and 60°C in BPW and at 55°C, 58°C, and 60°C in apple juice for intervals of 0, 10, 20, 25, and 30 s. These results show that electric field-induced ohmic heating led to additional bacterial inactivation at sublethal temperatures. Transmission electron microscopy (TEM) observations and the propidium iodide (PI) uptake test were conducted after treatment at 60°C for 0, 10, 20, 25 and 30 s in BPW to observe the effects on cell permeability due to electroporation-caused cell damage. PI values when ohmic and conventional heating were compared were significantly different (P < 0.05), and these differences increased with increasing levels of inactivation of three food-borne pathogens. These results demonstrate that ohmic heating can more effectively reduce bacterial populations at reduced temperatures and shorter time intervals, especially in acidic fruit juices such as apple juice. Therefore, loss of quality can be minimized in a pasteurization process incorporating ohmic heating.  相似文献   

7.
Cell surface properties, including hydrophobicity, zeta potential, carbohydrate and fatty acid components, were altered on treatment of E. coli K12 with methylene blue (MB) and direct electric current (DC). The treatment of fimbriated E. coli cells with MB greatly increased the agglutination of yeast cells when compared to untreated bacteria. However, this increased agglutination was markedly reduced when the bacteria were treated with MB plus DC. These results suggest that MB modifies cell surface components in the absence of light and these alterations are more pronounced when cells are treated simultaneously with MB and DC.  相似文献   

8.
The growth of Candida albicans was inhibited by some Escherichia coli strains both in conventional batch cultures and also in a chemostat under conditions of constant addition of fresh medium. Concentrations of 0.2 microgram amphotericin B per millilitre and of 2 microgram nystatin per millilitre, which caused a slight inhibition of C. albicans in pure culture, exerted a strong fungicidal effect when the yeast was placed in mixed cultures with certain strains of E. coli. Candida albicans cells, inhibited by either E. coli or in mixed culture with polyene antibiotics, appeared larger and less uniformly stained by acridine orange than control cells from pure cultures. Addition of chloramphenicol to the mixed cultures, in quantities sufficient to kill the E. coli cells, abolished the increased sensitivity of C. albicans to amphotericin B or nystatin. In preliminary in vivo tests, E. coli did not sensitize C. albicans to the polyene antibiotics.  相似文献   

9.
In the main electric organs of the electric eel, the cross-sectional area, the thickness of the electroplaxes, and certain electrical characteristics of the tissue vary widely between the anterior and posterior ends. However, a transverse layer of the organs one electroplax thick has certain characteristics which are roughly uniform along the organs. These are its volume, its maximum voltage, its maximum current per unit area, and the resistance of unit area at the peak of the discharge. Measurements of the voltage developed by a segment of the organs across different external resistances at different instants during the discharge are all rather well described by representing the segment, with the adjacent non-electric tissue, as a simple combination of E.M.F. and ohmic resistance. The internal resistance of the tissue varies during the discharge. Its E.M.F. appears to be practically constant, at least during the greater part of the discharge. Estimates made of the total electric energy show it about equal to the energy supplied by the decrease of phosphocreatine and the formation of lactic acid.  相似文献   

10.
We developed an electrochemical detection method for evaluating cellular physiological status based on the stringent response as a means to monitor cell viability. A reporter plasmid was constructed by inserting the beta-galactosidase gene (lacZ) under the control of the rpoS promoter, and then used to transform E. coli cells. Electrochemical responses from the products catalyzed by beta-galactosidase expressed by these E. coli cells were detected using the chronoamperometric technique in a nondestructive manner. Comparisons of response currents between the relA-positive strain and relA-negative strain revealed that increases in these currents were caused by the stringent response due to the stressful alcoholic environment, and thus as a model of stressful cultivating conditions. The current was proportional to the beta-galactosidase activity assayed by a conventional method that required the destruction of cells. The cellular physiological status, which depends on the stringent response as a viability marker, therefore, could then be evaluated online with a current using the rpoS-lacZ reporter gene in the relA-positive strain without pretreatment.  相似文献   

11.
AIMS: To study the effect of 2450 MHz microwave radiation under vacuum (vacuum microwave or VM) on survival and injury of Escherichia coli and to search for possible nonthermal effects associated with VM. METHODS AND RESULTS: Destruction kinetics of E. coli in peptone water were determined in a continuous-flow vacuum system, heated by convection heating in a water bath or with microwaves (VMs). Vacuum was used to control the boiling point of water and to maintain temperature in the bacterial suspensions at specified levels (49-64 degrees C). CONCLUSIONS: z-Value in the water bath treatment was 9.1 degrees C while for VM at 510 and 711 W it was 6.2 and 5.9 degrees C, suggesting that E. coli is more sensitive to temperature changes under microwave heating. Arrhenius calculations of the activation energies of the destruction reactions suggest that the mechanism of destruction in VM may be different from that of conventional heat. The number of injured micro-organisms showed no significant differences among treatments. SIGNIFICANCE AND IMPACT OF THE STUDY: The impact of temperature on E. coli destruction was different when microwaves were the medium of heat transfer, suggesting the existence of factors other than heat contributing to the lethal effect of VM.  相似文献   

12.
Aims: The purpose of this study was to investigate the efficacy of continuous ohmic heating for reducing Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in orange juice and tomato juice. Methods and Results: Orange juice and tomato juice were treated with electric field strengths in the range of 25–40 V cm?1 for different treatment times. The temperature of the samples increased with increasing treatment time and electric field strength. The rate of temperature change for tomato juice was higher than for orange juice at all voltage gradients applied. Higher electric field strength or longer treatment time resulted in a greater reduction of pathogens. Escherichia coli O157:H7 was reduced by more than 5 log after 60‐, 90‐ and 180‐s treatments in orange juice with 40, 35 and 30 V cm?1 electric field strength, respectively. In tomato juice, treatment with 25 V cm?1 for 30 s was sufficient to achieve a 5‐log reduction in E. coli O157:H7. Similar results were observed in Salm. Typhimurium and L. monocytogenes. The concentration of vitamin C in continuous ohmic heated juice was significantly higher than in conventionally heated juice (P < 0·05). Conclusions: Continuous ohmic heating can be effective in killing foodborne pathogens on orange juice and tomato juice with lower degradation of quality than conventional heating. Significance and Impact of the Study: These results suggest that continuous ohmic heating might be effectively used to pasteurize fruit and vegetable juices in a short operating time and that the effect of inactivation depends on applied electric field strengths, treatment time and electric conductivity.  相似文献   

13.
Wu Y  Wu M  He G  Zhang X  Li W  Gao Y  Li Z  Wang Z  Zhang C 《Analytical biochemistry》2012,423(1):15-22
In the current study, we examined the expression level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein in a number of organisms and the stability of GAPDH under various conditions. Our results revealed that GAPDH is present in multiple Escherichia coli strains, the yeast strain GS115, Caenorhabditis elegans, rat PC12 cells, and both mouse and rat brain. Furthermore, GAPDH was stably expressed under different concentrations of inducer and at different times of induction in E. coli (BL21) cells and yeast GS115 cells. Stable expression of GAPDH protein was also observed in C.elegans and PC12 cells that were treated with different concentrations of paraquat or sodium sulfite, respectively. In addition, we were able to detect and identify the endogenous gapA protein in E.coli via immunoprecipitation and MALDI-TOF-MS analysis. Endogenous gapA protein and exogenously expressed (subcloned) GAPDH proteins were detected in E. coli BL21 but not for gapC. With the exception of gapC in E. coli, the various isoforms of GAPDH possessed enzymatic activity. Finally, sequence analysis revealed that the GAPDH proteins were 76% identical, with the exception of E. coli gapC. Taken together, our results indicate that GAPDH could be universally used as an internal control for the Western blot analysis of prokaryotic and eukaryotic samples.  相似文献   

14.
大肠杆菌的直流电场刺激过程   总被引:1,自引:0,他引:1  
孙西同  马洁  孙晓彦  刘镔 《微生物学通报》2010,37(10):1440-1446
以钛网电极和铂网电极对培养瓶中大肠杆菌生长过程进行加电刺激,研究其在直流电场作用下的生长情况,并结合循环伏安扫描、恒电流、十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)及测定菌体ATP酶活力等技术对大肠杆菌的直流电场刺激过程进行研究。结果表明,在0-0.2275mA/cm2范围内,随着电流密度的增加,直流电场对大肠杆菌生长量的增长促进作用逐渐增加,而0.0455mA/cm2的电场则是获得最大活菌量的最适电流密度;通过对析氢活性不同的铂网电极与钛网电极通加相同电流密度的电场,发现铂电极培养体系菌体生长优于钛电极培养体系菌体的生长。经验证发现引起这种变化的原因主要是水的阴极电解产物吸附氢和氢气比例的不同引起的;同时发现在0.091mA/cm2电流密度下,直流电场能有效提高ATP酶的活力,在8h时通电菌样酶活为不通电菌样酶活的3.2倍;通过对0.0455mA/cm2直流电场刺激后的菌体蛋白进行SDS-PAGE分析发现加电菌体在分子量25kD与35kD左右多肽表达量明显高于不加电菌体的多肽表达量,而在分子量为66.2kD左右时多肽表达量低于不加电菌体多肽表达量。  相似文献   

15.
Neutral red (NR) was utilized as an electron mediator in microbial fuel cells consuming glucose to study both its efficiency during electricity generation and its role in altering anaerobic growth and metabolism of Escherichia coli and Actinobacillus succinogenes. A study of chemical fuel cells in which NADH, NR, and ferricyanide were the electron donor, the electronophore, and the electron acceptor, respectively, showed that electrical current produced from NADH was proportional to the concentration of NADH. Fourfold more current was produced from NADH in chemical fuel cells when NR was the electron mediator than when thionin was the electron mediator. In microbial fuel cells in which E. coli resting cells were used the amount of current produced from glucose when NR was the electron mediator (3.5 mA) was 10-fold more than the amount produced when thionin was the electron mediator (0.4 mA). The amount of electrical energy generated (expressed in joules per mole of substrate) and the amount of current produced from glucose (expressed in milliamperes) in NR-mediated microbial fuel cells containing either E. coli or A. succinogenes were about 10- and 2-fold greater, respectively, when resting cells were used than when growing cells were used. Cell growth was inhibited substantially when these microbial fuel cells were making current, and more oxidized end products were formed under these conditions. When sewage sludge (i.e., a mixed culture of anaerobic bacteria) was used in the fuel cell, stable (for 120 h) and equivalent levels of current were obtained with glucose, as observed in the pure-culture experiments. These results suggest that NR is better than other electron mediators used in microbial fuel cells and that sludge production can be decreased while electricity is produced in fuel cells. Our results are discussed in relation to factors that may improve the relatively low electrical efficiencies (1.2 kJ/mol) obtained with microbial fuel cells.  相似文献   

16.
The present study investigated the effects of microwave (MW) radiation applied under a sublethal temperature on Escherichia coli. The experiments were conducted at a frequency of 18 GHz and at a temperature below 40°C to avoid the thermal degradation of bacterial cells during exposure. The absorbed power was calculated to be 1,500 kW/m(3), and the electric field was determined to be 300 V/m. Both values were theoretically confirmed using CST Microwave Studio 3D Electromagnetic Simulation Software. As a negative control, E. coli cells were also thermally heated to temperatures up to 40°C using Peltier plate heating. Scanning electron microscopy (SEM) analysis performed immediately after MW exposure revealed that the E. coli cells exhibited a cell morphology significantly different from that of the negative controls. This MW effect, however, appeared to be temporary, as following a further 10-min elapsed period, the cell morphology appeared to revert to a state that was identical to that of the untreated controls. Confocal laser scanning microscopy (CLSM) revealed that fluorescein isothiocyanate (FITC)-conjugated dextran (150 kDa) was taken up by the MW-treated cells, suggesting that pores had formed within the cell membrane. Cell viability experiments revealed that the MW treatment was not bactericidal, since 88% of the cells were recovered after radiation. It is proposed that one of the effects of exposing E. coli cells to MW radiation under sublethal temperature conditions is that the cell surface undergoes a modification that is electrokinetic in nature, resulting in a reversible MW-induced poration of the cell membrane.  相似文献   

17.
Effects of low electric current (LEC) treatment on pure bacterial cultures   总被引:1,自引:0,他引:1  
AIMS: This research focused on the effects of low electric current (LEC) on the cell viability and metabolic activity of Escherichia coli and Bacillus cereus. METHODS AND RESULTS: Different LEC intensities at fixed amperage were applied, employing either graphite or copper electrode pairs, and the effects were determined by conventional cultural methods and bioindicators. On E. coli, the LEC with graphite electrodes at 5 and 10 mA led to no significant variation, but at 20 and 40 mA there was increasing inhibition of both the enzymatic activities and growth, and a reduction in ATP content. On B. cereus, similar experiments at the lower amperages did not have any inhibitor effects, however, the 40 mA current stimulated growth, ATP content and some enzymatic activities. The LEC treatment using copper electrodes caused, already at 5 mA, inhibition of bacterial growth and metabolic and enzymatic activities in both E. coli and B. cereus. CONCLUSIONS: On the basis of the obtained results using different amperages and electrodes, we can conclude that E. coli seem to be more sensitive compared with B. cereus. SIGNIFICANCE AND IMPACT OF THE STUDY: The study increases the knowledge on LEC treatment effects on the pure bacterial cultures.  相似文献   

18.
Cell surface protein were found to play a role in the sugar-specific molecular mechanism by which bacteria adhere to mammalian cells. We have demonstrated that at least three different types of lectin-like proteins mediate the mannose-sensitive adherence of gram negative bacteria to epithelial cells. One group of such lectins was shown in our study to be associated with the bacterial flagellum. Flagella isolated from Escherichia coli 7343 and Serratia marcescens 8347 exhibited mannose-sensitive agglutination of yeast cells; however, the flagella of the two bacteria differ in the molecular structure of their protein subunits. Another class of lectins comprises the bacterial fimbriae (also known as type 1 pili), which were previously shown to facilitate the mannose-sensitive adherence of various bacteria to mammalian cells. Fimbriae isolated from E. coli 346 were reversibly dissociated by saturated guanidine hydrochloride to their protein subunits. The dissociated subunits retained in part their mannose-binding ability, and were reassembled into fimbriae-like structures by removal of the denaturant under specific conditions. Mannose-sensitive yeast agglutinating activity of E. coli 2699, as well as of its isolated outer membranes devoid of fimbriae or flagella, was abolished by pretreatment with trypsin. It is therefore believed that the mannose-sensitive adherence of these bacteria is mediated also by lectin-like proteins associated directly with the outer membrane.  相似文献   

19.
Maximal revival of heat-damaged Escherichia coli occurred in nutrient media containing 0.8 to 1.0% (w/v) of Difco yeast extract. Vitamins did not appear to be involved in the recovery process. The situation with amino acids was less clear-cut, and, although certain of these may be essential for revival, proof for this is as yet inconclusive. Replica plating, in which colonies (from cells which had survived a heating process) on a rich medium were replicated onto minimal agar, revealed that no auxotrophic mutants had been formed as a result of heat treatment. Bacteria which were heated in 1% (w/v) yeast extract were killed more slowly than those heated in water.  相似文献   

20.
This study was conducted to investigate the efficacy of near-infrared (NIR) heating to reduce Salmonella enterica serovar Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes in ready-to-eat (RTE) sliced ham compared to conventional convective heating, and the effect of NIR heating on quality was determined by measuring the color and texture change. A cocktail of three pathogens was inoculated on the exposed or protected surfaces of ham slices, followed by NIR or conventional heating at 1.8 kW. NIR heating for 50 s achieved 4.1-, 4.19-, and 3.38-log reductions in surface-inoculated S. Typhimurium, E. coli O157:H7, and L. monocytogenes, respectively, whereas convective heating needed 180 s to attain comparable reductions for each pathogen. There were no statistically significant (P > 0.05) differences in reduction between surface- and internally inoculated pathogens at the end of NIR treatment (50 s). However, when treated with conventional convective heating, significant (P < 0.05) differences were observed at the final stages of the treatment (150 and 180 s). Color values and texture parameters of NIR-treated (50-s treatment) ham slices were not significantly (P > 0.05) different from those of nontreated samples. These results suggest that NIR heating can be applied to control internalized pathogens as well as surface-adhering pathogens in RTE sliced meats without affecting product quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号