首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The P-glycoprotein efflux system located on the apical membrane of brain capillary endothelial cells functions as part of the blood-brain barrier. In this study, primary cultures of bovine brain microvessel endothelial cells (BMECs) were investigated for the presence of a P-glycoprotein system and its contribution in regulating ivermectin distribution across the blood-brain barrier. Results of rhodamine 123 uptake studies with cyclosporin A and verapamil as substrates indicated that a functional efflux system was present on BMECs. Immunoblot analysis with the C219 monoclonal antibody to the product of the multidrug resistant member 1(MDR1) gene also confirmed the expression of MDR1 in the BMECs. Unbound ivermectin was shown to significantly increase the uptake of rhodamine 123 in BMECs, however, the drug only modestly enhanced the transcellular passage of rhodamine. The results of these studies affirmed that unbound ivermectin is an inhibitor of the MDR1 efflux system in BMECs.  相似文献   

2.
Cellular drug resistance to natural products is often due to the presence of an efflux pump which reduces intracellular drug content and chemosensitivity. A 170 kD cell surface resident P-glycoprotein is believed to act as the efflux pump. In the present report, we have compared three commercially available antibodies C-219, JSB-1, and mdr(Ab-1) for use in flow cytometric detection of P-glycoprotein positive cells. Our data show that C219 gives uniformly good results in a variety of murine and human tumor cell lines for detection of P-glycoprotein positive cells. We have also compared data of C219 stained cells analyzed in parallel on a flow cytometer equipped with a small laser (15 mW) and a large laser (5 watt) cell sorter. Data obtained on these two instruments are comparable. A staining protocol and data on dual staining of cells for DNA content by propidium iodide and P-glycoprotein expression after FITC labeling are also presented.  相似文献   

3.
P-glycoprotein, a hydrophobic 170-kDa integral protein overexpressed in the plasma membrane of multidrug-resistant cells, is proposed to function as an ATP-dependent drug efflux pump. Plasma membrane preparations highly enriched in P-glycoprotein were isolated from multidrug-resistant cells by discontinuous sucrose gradient and Ca2+ precipitation methods. Several strategies were used for P-glycoprotein purification, with the goal being to achieve both good yields and purity, while keeping experimental manipulation to a minimum. P-glycoprotein was solubilized from the plasma membrane using 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Immunoaffinity chromatography using C219 monoclonal antibody produced low yields of moderately pure protein. Sequential lectin affinity chromatography on RCA-120 followed by lentil lectin resulted in a P-glycoprotein preparation that showed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A fraction of P-glycoprotein did not bind to RCA-120, most likely as a result of heterogeneous glycosylation. A combination of chromatography on RCA-120 followed by immunoaffinity chromatography on C219 resulted in low yields of very pure P-glycoprotein.  相似文献   

4.
Multidrug resistance P-glycoprotein (MDR1) is a membrane proteinof 150-170 kDa that catalyzes the ATP-driven efflux of hydrophobic xenobiotics, including fluorescent dyes, from cells. Expressed in manyepithelial tissues and in the endothelia of the blood-brain barrier,the MDR1 protein provides major routes of detoxification. We found thattaste cells of the rat vallate papilla (VP; posterior tongue) had onlya slow increase in fluorescence due to uptake of the hydrophobic dyecalcein acetoxymethyl ester. However, the development of fluorescencewas accelerated two- to threefold by substrates and/orinhibitors of MDR1, such as verapamil, tamoxifen, and cyclosporin A,and by addition of the transport-blocking antibody to MDR1, UIC2.Western blots of vallate tissue rich in taste buds withthe MDR1-specific monoclonal antibodies C219 and C494 revealed animmunoreactive protein at ~170 kDa. In contrast, the lingual epithelium surrounding the VP showed a much weaker band with these antibodies. Furthermore, using the antibodies C494 and UIC2 with tissuesections, MDR1-like immunoreactivity was found in taste cells. Theseresults show that MDR1 is present and functional in vallate taste cellsof the rat. MDR1-related transport may achieve active elimination ofxenobiotics from the sensory cells and thereby protect the peripheraltaste organs from potentially harmful molecules contained in ananimal's food.

  相似文献   

5.
A monoclonal antibody (C219) that recognizes the P-glycoprotein (Mr = 170,000) in plasma membranes of multidrug-resistant Chinese hamster ovary (CHO) cell lines was used to assay renal brush border membrane (BBM) and basolateral membrane (BLM) fractions for the presence of a cross-reactive polypeptide. The C219 antibody bound to a 155,000 dalton protein in immunoblots of rat BBM but not BLM proteins resolved by sodium dodecyl sulfate gel electrophoresis. The corresponding human kidney BBM and dog kidney BBM proteins had molecular weights of 170,000 and 160,000 respectively. The glycoprotein nature of the renal protein was shown by its sensitivity to N-glycanase treatment which reduced the apparent molecular weight of the dog protein to 120,000. In addition, dog P-glycoprotein could be bound to and eluted from immobilized wheat germ agglutinin. The molecular weight, antibody crossreactivity, glycosidase sensitivity and lectin binding show that this protein is a normal kidney analogue of the P-glycoprotein induced in multidrug resistant cell lines.  相似文献   

6.
P-glycoproteins encoded by multidrug resistance 1 (mdr1) genes are ATP-dependent transporters located in the plasma membrane that mediate the extrusion of hydrophobic compounds from the cell. Using cultured isolated rainbow trout hepatocytes, we characterized an mdr1-like transport mechanism of the teleost liver. Immunoblots with the monoclonal antibody C219, which recognizes a conserved epitope of P-glycoproteins, revealed the presence of immunoreactive protein(s) of 165 kDa in trout liver and cultured hepatocytes. In trout liver sections, the immunohistochemistry with C219 stained bile canalicular structures. Compounds known to interfere with mdr1-dependent transport (verapamil, vinblastine, doxorubicin, cyclosporin A, and vanadate) all increased the accumulation of rhodamine 123 by hepatocytes. Verapamil, vinblastine, and cyclosporin A decreased the efflux of rhodamine 123 from hepatocytes preloaded with rhodamine 123. By contrast, the substrate of the canalicular cation transporter tetraethylammonium and the inhibitor of the multidrug resistance-associated protein MK571 had no effect on rhodamine 123 transport. The results demonstrate the presence of an mdr1-like transport system in the teleost liver and suggest its function in biliary excretion.  相似文献   

7.
Reduced cyclosporin accumulation in multidrug-resistant cells   总被引:4,自引:0,他引:4  
Cyclosporin accumulation was reduced by 50% or more in multidrug- resistant CHRC5 CHO cells with high levels of P-glycoprotein expression compared to drug sensitive AuxB1 CHO cells. This difference could be overcome by verapamil which is known to interact with P-glycoprotein and reverse multidrug resistance. The difference in cyclosporin accumulation between sensitive and resistant cells decreased with increasing cyclosporin concentrations suggesting that cyclosporine itself regulated its own accumulation through interaction with P-glycoprotein. Indeed, cyclosporin also reversed differences in vinblastine accumulation between resistant and sensitive cell lines. Since P-glycoprotein is highly expressed in the kidney which is also a target for cyclosporin toxicity, the effects of verapamil on cyclosporin accumulation were studied in two renal cell lines, rat mesangial cells and LLCPK1, cells. Verapamil increased cyclosporin accumulation by approximately 70%. These results suggest that cellular cyclosporine accumulation is regulated at least in part by its interaction with P-glycoprotein.  相似文献   

8.
A series of CCRF-CEM sublines selected for extreme resistance to methotrexate has been shown previously to exhibit cross resistance to a number of agents belonging to the multidrug resistance phenotype (J.Natl.Cancer Inst.1989; 81, 1250-1254). The role of the mdr1 gene and its product (P-glycoprotein) in this atypical pattern of multidrug resistance has now been investigated. Southern and Northern analyses failed to demonstrate any amplification, rearrangement or over-expression of the mdr1 gene in the drug-resistant cells. Similarly, monoclonal antibodies MRK16 and JSB1 revealed no increase in the amount of P-glycoprotein present. By contrast, monoclonal antibody C219 detected a 170 kDa protein in all sublines, and in highest concentration in the most resistant cells. The results raise the possibility that a novel, C219-reactive protein may mediate resistance to both methotrexate and members of the multidrug resistance family.  相似文献   

9.
The brain distribution of the enantiomers of the antimalarial drug mefloquine is stereoselective according to the species. This stereoselectivity may be related to species-specific differences in the properties of some membrane-bound transport proteins, such as P-glycoprotein (P-gp). The interactions of racemic mefloquine and its individual enantiomers with the P-glycoprotein efflux transport system have been analysed in immortalised rat brain capillary endothelial GPNT cells. Parallel studies were carried out for comparison in human colon carcinoma Caco-2 cells. The cellular accumulation of the P-glycoprotein substrate, [(3)H]vinblastine, was significantly increased both in GPNT cells and in Caco-2 cells when treated with racemic mefloquine and the individual enantiomers. In GPNT cells, the (+)-stereoisomer of mefloquine was up to 8-fold more effective than its antipode in increasing cellular accumulation of [(3)H]vinblastine, while in Caco-2 cells, both enantiomers were equally effective. These results suggest that racemic mefloquine and its enantiomers are effective inhibitors of P-gp. Furthermore, a stereoselective P-glycoprotein inhibition is observed in rat cells but not in human cells. The efflux of [(14)C]mefloquine from GPNT cells was decreased when the cells were incubated with the P-gp modulators, verapamil, cyclosporin A or chlorpromazine, suggesting that MQ could be a P-gp substrate.  相似文献   

10.
We investigated the cellular/subcellular localization and functional expression of P-glycoprotein, an ATP-dependent membrane-associated efflux transporter, in astrocytes, a brain parenchyma compartment that is poorly characterized for the expression of membrane drug transporters. Analyses were carried out on primary cultures of astrocytes isolated from the cerebral cortex of neonatal Wistar rats and CTX TNA2, an immortalized rat astrocyte cell line. Both cell cultures display morphological features typical of type I astrocytes. RT-PCR analysis revealed mdr1a and mdr1b mRNA in primary cultures of astrocytes and in CTX TNA2 cells. Western blot analysis using the P-glycoprotein monoclonal C219 antibody detected a single band of appropriate size in both cell systems. Immunocytochemical analysis using the monoclonal antibodies C219 and MRK16 labeled P-glycoprotein along the plasma membrane, caveolae, coated vesicles and nuclear envelope. Immunoprecipitation studies using the caveolin-1 polyclonal H-97 antibody demonstrated that P-glycoprotein is physically associated with caveolin-1 in both cell culture systems. The accumulation of [(3)H]digoxin (an established P-glycoprotein substrate) by the astrocyte cultures was significantly enhanced in the presence of standard P-glycoprotein inhibitors and an ATP depleting agent. These results demonstrate the cellular/subcellular location and functional expression of P-glycoprotein in rat astrocytes and suggest that this glial compartment may play an important role in the regulation of drug transport in the CNS.  相似文献   

11.
Whole cells of Listeria monocytogenes were detected with a compact, surface plasmon resonance (SPR) sensor using a phage-displayed scFv antibody to the virulence factor actin polymerization protein (ActA) for biorecognition. Phage Lm P4:A8, expressing the scFv antibody fused to the pIII surface protein was immobilized to the sensor surface through physical adsorption. A locally constructed fluidics system was used to deliver solutions to the compact, two-channel SPREETA sensor. Specificity of the sensor was tested using common food-borne bacteria and a control phage, M13K07 lacking the scFv fusion on its coat protein. The detection limit for L. monocytogenes whole cells was estimated to be 2 x 10(6)cfu/ml. The sensor was also used to determine the dissociation constant (Kd) for the interaction of phage-displayed scFv and soluble ActA in solution as 4.5 nM.  相似文献   

12.
A membrane associated ATP-dependent efflux pump, similar in function to mammalian P-glycoprotein, was detected in anal papillae of Chironomus riparius larvae. Immunohistochemical analysis of larval tissues, using monoclonal antibodies against P-glycoprotein, was supplemented by functional in vivo and in vitro assays which confirmed the existence of a mechanism for transporting xenobiotic substances. The in vitro ATPase activity of homogenate fractions increased in the presence of typical P-glycoprotein substrates (vinblastine, actinomycin D or ivermectin). This increase was unaffected by inhibitors of other membrane ATPases (sodium azide, EGTA, ouabain), but sensitive to vanadate, cyclosporin A and verapamil which inhibit mammalian P-glycoprotein mediated ATP-consumption. Sublethal concentrations of specific P-glycoprotein-inhibitors such as verapamil or cyclosporin A synergistically enhanced the mortality of C. riparius towards ivermectin. Although cyclosporin A originates from entomopathogenic fungi, its mode of action in insects and its function during infection are not understood. Our results lend some credit to the hypothesis that this compound is possibly released to promote poisoning of the infected host by xenobiotics which are normally removed by a P-glycoprotein related pump. The putative role of insect P-glycoprotein homologues in the context of multiple resistance towards insecticides is discussed.  相似文献   

13.
We determinedthe role of the multidrug resistance (MDR1) gene product,P-glycoprotein (PGP), in the secretion of aldosterone by the adrenalcell line NCI-H295. Aldosterone secretion is significantly decreased bythe PGP inhibitors verapamil, cyclosporin A (CSA), PSC-833, andvinblastine. Aldosterone inhibits the efflux of the PGP substraterhodamine 123 from NCI-H295 cells and from human mesangial cells(expressing PGP). CSA, verapamil, and the monoclonal antibody UIC2significantly decreased the efflux of fluorescein-labeled (FL)-aldosterone microinjected into NCI-H295 cells. In MCF-7/VP cells,expressing multidrug resistance-associated protein (MRP) but not PGP,and in the parental cell line MCF7 (expressing no MRP andno PGP), the efflux of microinjected FL-aldosterone was slow. In BC19/3cells (MCF7 cells transfected with MDR1), the efflux of FL-aldosteronewas rapid and it was inhibited by verapamil, indicating thattransfection with MDR1 cDNA confers the ability to transportFL-aldosterone. These results strongly indicate that PGP plays a rolein the secretion of aldosterone by NCI-H295 cells and in other cellsexpressing MDR1, including normal adrenal cells.

  相似文献   

14.
15.
Pharmacologic circumvention of multidrug resistance   总被引:4,自引:0,他引:4  
The ability of malignant cells to develop resistance to chemotherapeutic drugs is a major obstacle to the successful treatment of clinical tumors. The phenomenon multidrug resistance (MDR) in cancer cells results in cross-resistance to a broad range of structurally diverse antineoplastic agents, due to outward efflux of cytotoxic substrates by themdr1 gene product, P-glycoprotein (P-gp). Numerous pharmacologic agents have been identified which inhibit the efflux pump and modulate MDR. The biochemical, cellular and clinical pharmacology of agents used to circumvent MDR is analyzed in terms of their mechanism of action and potential clinical utility. MDR antagonists, termed chemosensitizers, may be grouped into several classes, and include calcium channel blockers, calmodulin antagonists, anthracycline andVinca alkaloid analogs, cyclosporines, dipyridamole, and other hydrophobic, cationic compounds. Structural features important for chemosensitizer activity have been identified, and a model for the interaction of these drugs with P-gp is proposed. Other possible cellular targets for the reversal of MDR are also discussed, such as protein kinase C. Strategies for the clinical modulation of MDR and trials combining chemosensitizers with chemotherapeutic drugs in humans are reviewed. Several novel approaches for the modulation of MDR are examined.Abbreviations ALL acute lymphocytic leukemia - AML acute myelogenous leukemia - CaM calmodulin - CsA cyclosporin A - MDR multidrug resistance - P-gp P-glycoprotein - PMA phorbol 12-myristate 13-acetate - PKC protein kinase C  相似文献   

16.
Summary P-glycoprotein, an integral membrane protein acting as an energy-dependent efflux pump, has been detected immunocytochemically in the human pancreatic islets using C 494 monoclonal antibody. Intense P-glycoprotein immunoreactivity was found in both endothelial cells of islet blood capillaries and in endocrine cells. Strong expression of P-glycoprotein has been found in the capillary blood vessels at blood-tissue barrier sites and in numerous kinds of cells with secretory/excretory function. Therefore the present findings suggest that P-glycoprotein may play a role in controlling the composition of the extracellular fluids and the intracellular milieu of endocrine islet cells and possibly in regulating their secretory activity.  相似文献   

17.
P-glycoprotein, an integral membrane protein acting as an energy-dependent efflux pump, has been detected immunocytochemically in the human pancreatic islets using C 494 monoclonal antibody. Intense P-glycoprotein immunoreactivity was found in both endothelial cells of islet blood capillaries and in endocrine cells. Strong expression of P-glycoprotein has been found in the capillary blood vessels at blood-tissue barrier sites and in numerous kinds of cells with secretory/excretory function. Therefore the present findings suggest that P-glycoprotein may play a role in controlling the composition of the extracellular fluids and the intracellular milieu of endocrine islet cells and possibly in regulating their secretory activity.  相似文献   

18.
Human P-glycoprotein (Pgp) is a 170-kDa plasma membrane protein that confers multidrug resistance to otherwise sensitive cells. A mutation in Pgp, G185-->V, originally identified as a spontaneous mutation, was shown previously to alter the drug resistance profiles in cell lines that are stably transfected with the mutant MDR1 cDNA and selected with cytotoxic agents. To understand the mechanism by which the V185 mutation leads to an altered drug resistance profile, we used a transient expression system that eliminates the need for drug selection to attain high expression levels and allows for the rapid characterization of many aspects of Pgp function and biosynthesis. The mutant and wild-type proteins were expressed at similar levels after 24-48 h in human osteosarcoma (HOS) cells by infection with a recombinant vaccinia virus encoding T7 RNA polymerase and simultaneous transfection with a plasmid containing MDR1 cDNA controlled by the T7 promoter. For both mutant and wild-type proteins, photolabeling with [3H]azidopine and [125I]iodoarylazidoprazosin, drug-stimulated ATPase activity, efflux of rhodamine 123, and accumulation of radiolabeled vinblastine and colchicine were evaluated. In crude membrane preparations from HOS cells, a higher level of basal Pgp-ATPase activity was observed for the V185 variant than for the wild-type, suggesting partial uncoupling of drug-dependent ATP hydrolysis by the mutant. Several compounds, including verapamil, nicardipine, tetraphenylphosphonium, and prazosin, stimulated ATPase activities of both the wild-type and mutant similarly, whereas cyclosporin A inhibited the ATPase activity of the mutant more efficiently than that of the wild-type. This latter observation explains the enhanced potency of cyclosporin A as an inhibitor of the mutant Pgp. No differences were seen in verapamil-inhibited rhodamine 123 efflux, but the rate of accumulation was slower for colchicine and faster for vinblastine in cells expressing the mutant protein, as compared with those expressing wild-type Pgp. We conclude that the G185-->V mutation confers pleiotropic alterations on Pgp, including an altered basal ATPase activity and altered interaction with substrates and the inhibitor cyclosporin A.  相似文献   

19.
Integrating surface plasmon resonance analysis with mass spectrometry allows detection and characterization of molecular interactions to be complemented with identification of interaction partners. We have developed a procedure for Biacore 3000 that automatically performs all steps from ligand fishing and recovery to sample preparation for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry including on-target digestion. In the model system used in this study a signal transduction protein, calmodulin, was selectively captured from brain extract by one of its interaction partners immobilized on a sensor chip. The bound material was eluted, deposited directly onto a MALDI target, and analyzed by mass spectrometry both as an intact protein and after on-target tryptic digestion. The procedure with direct deposition of recovered material on the MALDI target reduces sample losses and, in combination with automatic sample processing, increases the throughput of surface plasmon resonance mass spectrometry analysis.  相似文献   

20.
The human MDR3 gene is a member of the multidrug resistance (MDR) gene family. The MDR3 P-glycoprotein is a transmembrane protein that translocates phosphatidylcholine. The MDR1 P-glycoprotein related transports cytotoxic drugs. Its overexpression can make cells resistant to a variety of drugs. Attempts to show that MDR3 P-glycoprotein can cause MDR have been unsuccessful thus far. Here, we report an increased directional transport of several MDR1 P-glycoprotein substrates, such as digoxin, paclitaxel, and vinblastine, through polarized monolayers of MDR3-transfected cells. Transport of other good MDR1 P-glycoprotein substrates, including cyclosporin A and dexamethasone, was not detectably increased. MDR3 P-glycoprotein-dependent transport of a short-chain phosphatidylcholine analog and drugs was inhibited by several MDR reversal agents and other drugs, indicating an interaction between these compounds and MDR3 P-gp. Insect cell membranes from Sf9 cells overexpressing MDR3 showed specific MgATP binding and a vanadate-dependent, N-ethylmaleimide-sensitive nucleotide trapping activity, visualized by covalent binding with [alpha-(32)P]8-azido-ATP. Nucleotide trapping was (nearly) abolished by paclitaxel, vinblastine, and the MDR reversal agents verapamil, cyclosporin A, and PSC 833. We conclude that MDR3 P-glycoprotein can bind and transport a subset of MDR1 P-glycoprotein substrates. The rate of MDR3 P-glycoprotein-mediated transport is low for most drugs, explaining why this protein is not detectably involved in multidrug resistance. It remains possible, however, that drug binding to MDR3 P-glycoprotein could adversely affect phospholipid or toxin secretion under conditions of stress (e.g. in pregnant heterozygotes with one MDR3 null allele).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号