首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Helicobacter pylori is a gram-negative pathogenic bacterium that causes peptic ulcer disease and gastric cancer, and studies of the related potent enzymes associated with this bacterium are urgent for the discovery of novel drug targets. In bacteria, beta-hydroxyacyl-acyl carrier protein (ACP) dehydratase (FabZ) is a potent enzyme in fatty acid biosynthesis and catalyzes the dehydration of beta-hydroxyacyl-ACP to trans-2-acyl-ACP. In this study, the cloning and enzymatic characterization of FabZ from H. pylori strain SS1 (HpFabZ) were reported, and the gene sequence of HpfabZ was deposited in the GenBank database. Enzyme dynamic analysis showed that HpFabZ had a K(m) of 82.6+/-4.3 microM toward its substrate analog crotonoyl-CoA. Dynamic light scattering and native-PAGE investigations suggested that HpFabZ exists as hexamer in native state. Enzymatic characterization and thermal-induced unfolding analysis based on circular dichroism spectral measurements indicated that HpFabZ is very stable against high temperature (90 degrees C). Such a high stability of HpFabZ was well elucidated by the strong H-bonds and hydrophobic interactions among the HpFabZ hexamer as investigated in the modeled HpFabZ hexamer structure. Our current study is hoped to provide useful information in better understanding the FabZ of H. pylori strain and further supply possible hints in the discovery of anti-bacterial compounds using HpFabZ as target.  相似文献   

2.
Malonyl-CoA: acyl carrier protein transacylase (MCAT) is a critical enzyme responsible for the transfer of the malonyl moiety to holo-acyl carrier protein (ACP) forming the malonyl-ACP intermediates in the initiation step of type II fatty acid synthesis (FAS II) in bacteria. MCAT has been considered as an attractive drug target in the discovery of antibacterial agents. In this study, the crystal structure of MCAT from Helicobacter pylori (Hp) at 2.5 angstroms resolution is reported, and the interaction of HpMCAT with HpACP is extensively investigated by using computational docking, GST-pull-down, and surface plasmon resonance (SPR) technology-based assays. The crystal structure results reveal that HpMCAT has a compact folding composed of a large subdomain with a similar core as in alpha/beta hydrolases, and a similar ferredoxin-like small subdomain as in acylphosphatases. The docking result suggests two positively charged areas near the entrance of the active site of HpMCAT as the ACP-binding region. Binding assay research shows that HpMCAT demonstrates a moderately binding ability against HpACP. The solved 3D structure of HpMCAT is expected to supply useful information for the structure-based discovery of novel inhibitors against MCAT, and the quantitative study of HpMCAT interaction with HpACP is hoped to give helpful hints in the understanding of the detailed catalytic mechanisms for HpMCAT.  相似文献   

3.
Flavonoids are the major functional components of many herbal and insect preparations and demonstrate varied pharmacological functions including antibacterial activity. Here by enzymatic assay and crystal structure analysis, we studied the inhibition of three flavonoids (quercetin, apigenin, and (S)-sakuranetin) against the beta-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori (HpFabZ). These three flavonoids are all competitive inhibitors against HpFabZ by either binding to the entrance of substrate tunnel B (binding model A) or plugging into the tunnel C near the catalytic residues (binding model B) mainly by hydrophobic interaction and hydrogen-bond pattern. Surrounded by hydrophobic residues of HpFabZ at both positions of models A and B, the methoxy group at C-7 of (S)-sakuranetin seems to play an important role for the inhibitor's binding to HpFabZ, partly responsible for the higher inhibitory activity of (S)-sakuranetin than those of quercetin and apigenin against HpFabZ (IC(50) in microM: (S)-sakuranetin, 2.0 +/- 0.1; quercetin: 39.3 +/- 2.7; apigenin, 11.0 +/- 2.5). Our work is expected to supply useful information for understanding the potential antibacterial mechanism of flavonoids.  相似文献   

4.
beta-Hydroxyacyl-acyl carrier protein dehydratase (FabZ) is an important enzyme for the elongation cycles of both saturated and unsaturated fatty acids biosyntheses in the type II fatty acid biosynthesis system (FAS II) pathway. FabZ has been an essential target for the discovery of compounds effective against pathogenic microbes. In this work, to characterize the catalytic and inhibitory mechanisms of FabZ, the crystal structures of the FabZ of Helicobacter pylori (HpFabZ) and its complexes with two newly discovered inhibitors have been solved. Different from the structures of other bacterial FabZs, HpFabZ contains an extra short two-turn alpha-helix (alpha4) between alpha3 and beta3, which plays an important role in shaping the substrate-binding tunnel. Residue Tyr-100 at the entrance of the tunnel adopts either an open or closed conformation in the crystal structure. The crystal structural characterization, the binding affinity determination, and the enzymatic activity assay of the HpFabZ mutant (Y100A) confirm the importance of Tyr-100 in catalytic activity and substrate binding. Residue Phe-83 at the exit tunnel was also refined in two alternative conformations, leading the tunnel to form an L-shape and U-shape. All these data thus contributed much to understanding the catalytic mechanism of HpFabZ. In addition, the co-crystal structures of HpFabZ with its inhibitors have suggested that the enzymatic activity of HpFabZ could be inhibited either by occupying the entrance of the tunnel or plugging the tunnel to prevent the substrate from accessing the active site. Our study has provided some insights into the catalytic and inhibitory mechanisms of FabZ, thus facilitating antibacterial agent development.  相似文献   

5.
One of the small proteins from Helicobacter pylori, acyl carrier protein (ACP), was investigated by NMR. ACP is related to various cellular processes, especially with the biosynthesis of fatty acid. The basic NMR resonance assignment is a prerequisite for the validation of a heterologous protein interaction with ACP in H. pylori. Here, the results of the backbone (1)H, (15)N, and (13)C resonance assignments of the H. pylori ACP are reported using double- and triple-resonance techniques. About 97% of all of the (1)HN, (15)N, (13)CO, (13)Calpha, and (13)Cbeta resonances that cover 76 of the 78 non-proline residues are clarified through sequential- and specific- assignments. In addition, four helical regions were clearly identified on the basis of the resonance assignments.  相似文献   

6.
Liu W  Han C  Hu L  Chen K  Shen X  Jiang H 《FEBS letters》2006,580(2):697-702
Type II fatty acid synthesis (FAS II) is an essential process for bacteria survival, and malonyl-CoA:acyl carrier protein transacylase (MCAT) is a key enzyme in FAS II pathway, which is responsible for transferring the malonyl group from malonyl-CoA to the holo-ACP by forming malonyl-ACP. In this work, we described the cloning, characterization and enzymatic inhibition of a new MCAT from Helicobacter pylori strain SS1 (HpMCAT), and the gene sequence of HpfabD was deposited in the GenBank database (Accession No. AY738332 ). Enzymatic characterization of HpMCAT showed that the K(m) value for malonyl-CoA was 21.01+/-2.3 microM, and the thermal- and guanidinium hydrochloride-induced unfolding processes for HpMCAT were quantitatively investigated by circular dichroism spectral analyses. Moreover, a natural product, corytuberine, was discovered to demonstrate inhibitory activity against HpMCAT with IC(50) value at 33.1+/-3.29 microM. Further enzymatic assay results indicated that corytuberine inhibits HpMCAT in an uncompetitive manner. To our knowledge, this is the firstly reported MCAT inhibitor to date. This current work is hoped to supply useful information for better understanding the MCAT features of H. pylori strain, and corytuberine might be used as a potential lead compound in the discovery of the antibacterial agents using HpMCAT as target.  相似文献   

7.
AIM: Helicobacter pylori is known to enhance gastric carcinogenesis induced by chemical carcinogens. We previously demonstrated that infection with H. pylori strain SS1 did not enhance such carcinogenesis in C57BL/6 mice. Whether this result was due to the bacterial strain SS1 or to the experimental host, C57BL/6 mice, should be addressed. Therefore, we examined whether H. pylori strains introduced to the same host (Mongolian gerbils) differed in carcinogenicity. MATERIALS AND METHODS: H. pylori TN2GF4 strain (CagA(+), VacA(+)) and SS1 strain (CagA functionally(-), VacA(-)) were infected to Mongolian gerbils (n = 126). In the first experiment (induction of gastritis), histologic change in gastric mucosa of gerbils infected by H. pylori (TN2GF4, SS1, vehicle) without N-methyl-N-nitrosourea (MNU) at 1 month or 6 months was assessed. In the second experiment (experimental carcinogenesis), H. pylori (TN2GF4, SS1, vehicle) was inoculated to the gerbils after administration of MNU for 10 weeks, and the number of cancers and histopathologic changes at week 54 were assessed. RESULTS: In the first experiment, activity and inflammation in the TN2GF4 group were significantly greater than in the SS1 group at 1 month, while no significant difference was noted at 6 months. On the other hand, intestinal metaplasia and atrophy were significantly greater with TN2GF4 than with SS1 at 6 months but not at 1 month. In studies on experimental carcinogenesis, microscopically, 47.8% (11/23), 26% (7/26), and 0% (0/26), of animals had gastric adenocarcinoma in the MNU + TN2GF4 group, MNU + SS1 group, and MNU alone group, respectively. CONCLUSION: Both H. pylori strains, TN2GF4 and SS1, promoted carcinogenesis in Mongolian gerbils. The severity of gastritis and destruction and restoration of gastric mucosa may be related to gastric carcinogenesis. That the SS1 strain significantly accelerated carcinogenesis only in Mongolian gerbils and not in C57BL/6 mice suggests the crucial role of host factors in carcinogenesis by H. pylori infection.  相似文献   

8.
De Ungria MC  Kolesnikow T  Cox PT  Lee A 《Plasmid》1999,41(2):97-109
The 5846-bp circular plasmid pHPS1 of Helicobacter pylori Sydney strain, SS1, was cloned, sequenced, and structurally characterized. The SS1 strain is widely used in animal studies of H. pylori infection. The sequence of pHPS1 revealed three open reading frames (ORFs), all of which are transcribed. Two ORFs encode putative plasmid replication proteins, RepA and RepB, similar to replicases resident on theta plasmids. In contrast, the function of ORF2 remains cryptic due to the absence of sequence similarity with any known protein in sequence databases. In addition, species specificity of these three coding regions was shown using DNA dot blot hybridization in 57 diverse clinical H. pylori isolates and 32 Helicobacter and Campylobacter strains. RepA appears to be the predominant plasmid replication protein of H. pylori and the deduced amino acid sequence was highly conserved (76-96%) in 8 H. pylori isolates, including SS1. RepB was detected in 3 H. pylori isolates examined in this study, 2 of which possess only the repB gene. Analysis of the protein sequences of these two replicases, together with previously characterized H. pylori plasmid replication proteins, supports the formation of a distinct class of H. pylori plasmid proteins. Moreover, comprehensive analysis of the whole genome sequence of H. pylori strain 26695, pHPS1, and other H. pylori plasmid sequences that are available revealed interesting insights as to the occurrence of plasmid-mediated recombination within H. pylori. Common regions between plasmids and chromosome sequences of H. pylori were identified in this study which could only have arisen by genetic recombination, thus providing the first line of evidence, albeit indirectly, of the contribution of H. pylori plasmids in generating an extensive genetic heterogeneity characteristic of this important gastroduodenal pathogen.  相似文献   

9.
We studied the potential inhibitory effect of Lactobacillus casei strain Shirota (from the fermented milk product Yakult [Yakult Ltd., Tokyo, Japan]) on Helicobacter pylori by using (i) in vitro inhibition assays with H. pylori SS1 (Sydney strain 1) and nine H. pylori clinical isolates and (ii) the in vivo H. pylori SS1 mouse model of infection over a period of 9 months. In vitro activity against H. pylori SS1 and all of the clinical isolates was observed in the presence of viable L. casei strain Shirota cells but not in the cell-free culture supernatant, although there was profound inhibition of urease activity. In vivo experiments were performed by oral administration of L. casei strain Shirota in the water supply over a period of 9 months to 6-week-old C57BL/6 mice previously infected with H. pylori SS1 (study group; n = 25). Appropriate control groups of H. pylori-infected but untreated animals (n = 25) and uninfected animals given L. casei strain Shirota (n = 25) also were included in the study. H. pylori colonization and development of gastritis were assessed at 1, 2, 3, 6, and 9 months postinfection. A significant reduction in the levels of H. pylori colonization was observed in the antrum and body mucosa in vivo in the lactobacillus-treated study group, as assessed by viable cultures, compared to the levels in the H. pylori-infected control group. This reduction was accompanied by a significant decline in the associated chronic and active gastric mucosal inflammation observed at each time point throughout the observation period. A trend toward a decrease in the anti-H. pylori immunoglobulin G response was measured in the serum of the animals treated with lactobacillus, although this decrease was not significant.  相似文献   

10.
Constitutive expression of gamma-glutamyltranspeptidase (GGT) activity is common to all Helicobacter pylori strains, and is used as a marker for identifying H. pylori isolates. Helicobacter pylori GGT was purified from sonicated extracts of H. pylori strain 85P by anion exchange chromatography. The N-terminal amino acid sequences of two of the generated endo-proteolysed peptides were determined, allowing the cloning and sequencing of the corresponding gene from a genomic H. pylori library. The H. pylori ggt gene consists of a 1681 basepair (bp) open reading frame encoding a protein with a signal sequence and a calculated molecular mass of 61 kDa. Escherichia coli clones harbouring the H. pylori ggt gene exhibited GGT activity at 37 degrees C, in contrast to E. coli host cells (MC1061, HB101), which were GGT negative at 37 degrees C. GGT activity was found to be constitutively expressed by similar genes in Helicobacter felis, Helicobacter canis, Helicobacter bilis, Helicobacter hepaticus and Helicobacter mustelae. Western immunoblots using rabbit antibodies raised against a His-tagged-GGT recombinant protein demonstrated that H. pylori GGT is synthesized in both H. pylori and E. coli as a pro-GGT that is processed into a large and a small subunit. Deletion of a 700 bp fragment within the GGT-encoding gene of a mouse-adapted H. pylori strain (SS1) resulted in mutants that were GGT negative yet grew normally in vitro. These mutants, however, were unable to colonize the gastric mucosa of mice when orally administered alone or together (co-infection) with the parental strain. These results demonstrate that H. pylori GGT activity has an essential role for the establishment of the infection in the mouse model, demonstrating for the first time a physiological role for a bacterial GGT enzyme.  相似文献   

11.
A previously annotated open reading frame (ORF) (HP0826) from Helicobacter pylori was cloned and expressed in Escherichia coli cells and determined to be a beta-1,4-galactosyltransferase that used GlcNAc as an acceptor. Mutational analysis in H. pylori strains demonstrated that this enzyme plays a key role in the biosynthesis of the type 2 N-acetyl-lactosamine (LacNAc) polysaccharide O-chain backbone, by catalysing the addition of Gal to GlcNAc. To examine the potential role of this O-chain structure in bacterial colonization of the host stomach, the mutation was introduced into H. pylori strain SS1 which is known to be capable of colonizing the gastric mucosa of mice. Compared with the parental strain, mutated SS1 was less efficient at colonizing the murine stomach.  相似文献   

12.
Helicobacter pylori is an important human pathogen and one of the most successful chronic colonizers of the human body. H. pylori uses diverse mechanisms to modulate its interaction with the host in order to promote chronic infection and overcome host immune response. Restriction-modification genes are a major part of strain-specific genes present in H. pylori. The role of N(6) - adenine methylation in bacterial gene regulation and virulence is well established but not much is known about the effect of C(5) -cytosine methylation on gene expression in prokaryotes. In this study, it was observed by microarray analysis and RT-PCR, that deletion of an orphan C(5) -cytosine methyltransferase, hpyAVIBM in H. pylori strains AM5and SS1 has a significant effect on the expression of number of genes belonging to motility, adhesion and virulence. AM5ΔhpyAVIBM mutant strain has a different LPS profile and is able to induce high IL-8 production compared to wild-type. hpyAVIBM from strain 26695 is able to complement mutant SS1 and AM5 strains. This study highlights a possible significance of cytosine methylation in the physiology of H. pylori.  相似文献   

13.
目的 :建立感染幽门螺杆菌 (Helicobacterpylori,H pylori)SS1株BALB/c小鼠感染模型 ,研究H pylori胃内定植及胃黏膜病理变化。 方法 :BALB/c小鼠胃内分别接种体外培养的H pyloriSS1株 (实验组 )或PBS(对照组 ) ,组织学方法评价H pylori定植及胃黏膜病理变化。结果 :所有对照组小鼠胃组织未见H pylori定植 ,胃组织也未见明显的炎症反应 ;而所有实验组小鼠在感染H pylori 12周后 ,胃黏膜表面的黏液层及胃小凹顶端可见大量H pylori,胃体及胃窦交界处、胃体及胃底交界处最多 ;胃组织可见到不同程度的炎性反应 ,感染H pylori 2 4周后 ,胃组织炎性反应加重。结论 :用胃内接种方法建立了小鼠H pylori感染及其相关性胃炎的模型。  相似文献   

14.
This study describes the molecular makeup of the cell-wall lipopolysaccharides (LPSs) (O-chain polysaccharide-->core oligosaccharide-->lipid A) from five Helicobacter pylori strains: H. pylori 26695 and J99, the complete genome sequences of which have been published, the established mouse model Sydney strain (SS1), and the symptomatic strains P466 and UA915. All chemical and serological experiments were performed on the intact LPSs. H. pylori 26695 and SS1 possessed either a low-Mr semi-rough-form LPS carrying mostly a single Ley type-2 blood-group determinant in the O-chain region covalently attached to the core oligosaccharide or a high-Mr smooth-form LPS, as did strain J99, with an elongated partially fucosylated type-2 N-acetyllactosamine (polyLacNAc) O-chain polymer, terminated mainly by a Lex blood-group determinant, connected to the core oligosaccharide. In the midst of semi-rough-form LPS glycoforms, H. pylori 26695 and SS1 also expressed in the O-chain region a difucosylated antigen, alpha-L-Fucp(1-3)-alpha-L-Fucp(1-4)-beta-D-GlcpNAc, and the cancer-cell-related type-1 or type-2 linear B-blood-group antigen, alpha-D-Galp(1-3)-beta-D-Galp(1-3 or 4)-beta-D-GlcpNAc. The LPS of H. pylori strain P466 carried the cancer-associated type-2 sialyl Lex blood-group antigen, and the LPS from strain UA915 expressed a type-1 Leb blood-group unit. These findings should aid investigations that focus on identifying and characterizing genes responsible for LPS biosynthesis in genomic strains 26695 and J99, and in understanding the role of H. pylori LPS in animal model studies. The LPSs from the H. pylori strains studied to date were grouped into specific glycotype families.  相似文献   

15.
目的研究干酪乳杆菌LC2W对幽门螺杆菌(H.pylori)SS1黏附MKN-45的抑制作用,探讨益生菌对致病菌拈抗的机制。方法体外培养人胃癌细胞MKN-45,采用平板计数的方法研究2株细菌的黏附性质;引入数学模型,比较LC2W与H.pylori SS1的竞争、排除和替代作用。结果运用模型可以估算出LC2W和H.pylori SS1对MKN-45最大黏附数和亲和力的大小,并可以预测在混合体系中2种菌黏附的比例;实验发现LC2W对H.pylori SS1的黏附具有很强的竞争作用和排除作用,且这2种作用存在明显的量效关系。LC2W对H.pylori SS1的黏附的替代作用不明显或过程非常缓慢。结论所采用的数学模型能较好的模拟LC2W和H.pylori SS1黏附及LC2W对H.pylori SS1黏附抑制作用,这种抑制作用主要是通过竞争性占位形成的。  相似文献   

16.
To determine whether a protective immune response could be elicited by oral delivery of a recombinant live bacterial vaccine, Helicobacter pylori urease subunit B (UreB) was expressed for extracellular expression in food-grade bacterium Lactococcus lactis . The UreB-producing strains were then administered orally to mice, and the immune response to UreB was examined. Orally vaccinated mice produced a significant UreB-specific serum immunoglobulin G (IgG) response. Specific anti-UreB IgA responses could be detected in the feces of mice immunized with the secreting lactococcal strain. Mice vaccinated orally were significantly protected against gastric Helicobacter infection following a challenge with H. pylori strain SS1. In conclusion, mucosal vaccination with L. lactis expressing UreB produced serum IgG and UreB-specific fecal IgA, and prevented gastric infection with H. pylori .  相似文献   

17.
Altman E  Chandan V  Li J  Vinogradov E 《The FEBS journal》2011,278(18):3484-3493
In this study, we describe a reinvestigation of the lipopolysaccharide (LPS) structure of Helicobacter pylori strain Sydney (SS1) based on the NMR analysis of oligosaccharides obtained through the use of various degradations of the LPS as well as capillary electrophoresis-MS data. The results of the analysis indicated that the core region of a major H. pylori SS1 LPS glycoform consists of a backbone core oligosaccharide substituted at the D-glycero-D-manno-heptose (DD-Hep) residue by a linear chain composed of a trisaccharide fragment α-ddHep-3-α-L-Fuc-3-β-GlcNAc, as previously demonstrated for H. pylori strain 26695, further elongated by consecutively added α-Glc and β-Gal residues, and terminating in a novel linear chain consisting of 1,2-linked β-ribofuranosyl residues, where the last β-ribofuranosyl residue provides a point of attachment for the O-chain polysaccharide: [Formula: see text] where [2-β-Ribf-](n) is a short (three to five residues) oligomer of 1,2-linked β-ribofuranose (riban), and PS is a polysaccharide chain consisting of N-acetyllactosamine, substituted with α-Fuc to form Lewis (Le)-type structures. In addition to the previously identified LacNAc, Le(y) and Le(x) components, the O-chain polysaccharide of H. pylori SS1 LPS was found to contain a novel LacNAc unit carrying a phosphoethanolamine substituent at the O-6 position of β-GlcNAc residues.  相似文献   

18.
We have identified a Helicobacter pylori d-glycero-d-manno-heptosyltransferase gene, HP0479, which is involved in the biosynthesis of the outer core region of H. pylori lipopolysaccharide (LPS). Insertional inactivation of HP0479 resulted in formation of a truncated LPS molecule lacking an alpha-1,6-glucan-, dd-heptose-containing outer core region and O-chain polysaccharide. Detailed structural analysis of purified LPS from HP0479 mutants of strains SS1, 26695, O:3, and PJ1 by a combination of chemical and mass spectrometric methods showed that HP0479 likely encodes alpha-1,2-d-glycero-d-manno-heptosyltransferase, which adds a d-glycero-d-manno-heptose residue (DDHepII) to a distal dd-heptose of the core oligosaccharide backbone of H. pylori LPS. When the wild-type HP0479 gene was reintegrated into the chromosome of strain 26695 by using an "antibiotic cassette swapping" method, the complete LPS structure was restored. Introduction of the HP0479 mutation into the H. pylori mouse-colonizing Sydney (SS1) strain and the clinical isolate PJ1, which expresses dd-heptoglycan, resulted in the loss of colonization in a mouse model. This indicates that H. pylori expressing a deeply truncated LPS is unable to successfully colonize the murine stomach and provides evidence for a critical role of the outer core region of H. pylori LPS in colonization.  相似文献   

19.
Metronidazole is a critical ingredient for combination therapies of Helicobacter pylori infection, the major cause of peptic ulcer and gastric cancer. It has been recently reported that metronidazole resistance from H. pylori ATCC43504 is caused by the insertion of a mini-IS605 sequence and deletion of sequences in an oxygen insensitive NAD(P)H nitroreductase encoding gene (rdxA). We also found that an additional gene (frxA) encoding NAD(P)H flavin oxidoreductase in the same strain was truncated by frame-shift mutations. To assess whether the frxA truncation is also involved in metronidazole resistance, metronidazole sensitive H. pylori strains ATCC43629 and SS1 were transformed by the truncated frxA gene cloned from strain ATCC43504. All transformed cells grew on agar plates containing 16 microg ml(-1) of metronidazole. The involvement of the frxA gene in metronidazole resistance was also confirmed by insertion inactivation of frxA and/or rdxA genes from strain ATCC43629 and one metronidazole sensitive clinical isolate H. pylori 2600. In addition, the frxA gene cloned from the H. pylori 2600 showed metronidazole nitroreductase activity in Escherichia coli and rendered ordinary metronidazole resistant E. coli to metronidazole sensitive cell. These results indicate that the frxA gene may also be involved in metronidazole resistance among clinical H. pylori isolates.  相似文献   

20.
BACKGROUND: Helicobacter pylori is a causative agent of gastric and duodenal ulcers and gastric cancer. Its urease enzyme allows survival in acid conditions and drives bacterial intracellular metabolism. We aimed to investigate the role of urease in determining the intragastric distribution of Helicobacter species in vivo. MATERIALS AND METHODS: The C57BL/6 mouse model of gastritis was used for infection with Helicobacter felis (CS1) or H. pylori (SS1). Urease-modulating compounds urea and/or fluorofamide (urease inhibitor) were administered to mice over 7 days. Concurrent gastric acid inhibition by omeprazole was also examined. Bacterial distribution in the antrum, body, antrum/body, and body/cardia transitional zones was graded "blindly" by histologic evaluation. Bacterial colony counts on corresponding tissue were also conducted. RESULTS: Urease inhibition by fluorofamide decreased H. pylori survival in most gastric regions (p < .05); however, there were no marked changes to H. felis colonization after this treatment. There was a consistent trend for decreased antral colonization, and an increase in antrum/body transitional zone and body colonization with excess 5% or 6% (w/v) urea treatment. Significant reductions of both Helicobacter species were observed with the co-treatment of urea and fluorofamide (p < .05). Collateral treatment with omeprazole did not alter H. pylori colonization patterns caused by urea/fluorofamide. CONCLUSIONS: Urease perturbations affect colonization patterns of Helicobacter species. Combined urea and fluorofamide treatment reduced the density of both Helicobacter species in our infection model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号