首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
血管钠肽对中度低氧诱导的心肌细胞蛋白合成有抑制作用   总被引:3,自引:1,他引:3  
Lu SY  Zhu MZ  Guo HT  Yu J  Wei QM 《生理学报》2002,54(1):7-11
实验探讨了心房钠尿肽家族新成员血管钠肽(vasonatrin peptide,VNP)对中度低氧诱导的心肌细胞蛋白合成的影响,在培养的新生大鼠心肌细胞上,用四唑盐(MTT)比色实验,总蛋白含量测定和^3H-亮氨酸掺入实验等方法观察细胞数和蛋白合成情况,并用放免法测定VNP对细胞内环鸟苷酸(cGMP)和环腺苷酸(cAMP)以及培养上清液中内皮素含理的影响,探讨VNP的作用机制,结果显示,重度低氧24h,心肌细胞数和蛋白合成均降低,而中度低氧显著增加蛋白的合成,具有促心肌细胞肥大的作用,VNP浓度依赖性地抑制中度低氧诱导的心肌细胞蛋白合成增加,并且升高细胞内cGMP水平,降低低氧诱导的培养上清液中内皮素的含量,结果提示,VNP抑制中度低氧诱导的新生大鼠心肌细胞蛋白合成增加,该作用与其升高细胞内cGMP浓度、降低低氧诱导的内皮素合成和/或释放增加有关。  相似文献   

2.
内皮素-1预处理对培养乳鼠心肌细胞低氧损伤的保护作用   总被引:13,自引:0,他引:13  
Pan YX  Lin L  Yuan WJ  Tang CS 《生理学报》2003,55(2):171-176
实验观察了 0 0 1- 1nmol/L内皮素 1(ET 1)预处理对低氧孵育 ( 3 %O2 5 %CO2 ,12h)的培养乳鼠心肌细胞乳酸脱氢酶 (LDH)释放量、培养液上清超氧化物歧化酶 (SOD)活性以及丙二醛 (MDA)含量的影响。用Fluo 3 /AM负载培养的心肌细胞 ,在激光扫描共聚焦显微镜下监测急性低氧的心肌细胞 [Ca2 +]i 的变化和ET 1预处理对低氧所致 [Ca2 +]i 变化的影响。结果如下 :( 1)心肌细胞低氧孵育 12h后 ,培养液上清LDH活力和MDA含量较常氧对照组明显升高 ,分别为 43 3 3± 1 2 1U/Lvs 19 3 3± 1 0 3U/L和 1 71± 0 0 2nmol/Lvs 0 91± 0 0 3nmol/L (P<0 0 1) ,SOD活性为 16 93± 1 11U/ml明显低于常氧对照组的 3 3 48± 1 15U/ml (P <0 0 1) ;0 0 1- 1nmol/LET 1预处理呈浓度依赖性抑制低氧培养心肌细胞LDH释放 ,减少培养液上清MDA含量、提高SOD活性 (P <0 0 1)。 ( 2 )低氧灌流后 2 9± 1 5s (n =2 3 )心肌细胞自发性钙瞬变完全终止 ,[Ca2 +]i 升高了 10 7± 13 2 % (P <0 0 0 1) ;0 0 1- 1nmol/LET 1能明显加快心肌细胞钙瞬变的频率 (P <0 0 1) ;ET 1预处理后低氧所致钙瞬变终止的时间较单纯低氧组明显推迟 ,[Ca2 +]i过度升高被明显减轻 (P <0 0 1)。上述结果表明 ,0 0 1- 1nmol/LET 1预处理可减轻培  相似文献   

3.
Despite the clinical importance of cardiomyocyte death following ischemia and reperfusion, little is known about the nature of the process. In primary rat neonatal cardiomyocyte cultures, cell death was induced by ischemia (deprivation of oxygen, serum and glucose) and reperfusion. We report here that ischemia induced primarily necrosis, whereas subsequent reperfusion induced apoptosis. Apoptosis of rat neonatal cardiomyocytes could not be prevented by protein synthesis inhibitors, suggesting that molecular components of the apoptotic pathway pre-exist in these cells. IGFs and calpain inhibitors had no effect on necrotic death during ischemia, but they significantly reduced apoptotic death during reperfusion. These results support the concept that inhibition of post-ischemic apoptotic death in the myocardium may provide a valuable new therapeutic strategy for the treatment of acute myocardial ischemia.  相似文献   

4.
Caspase-independent, non-apoptotic cell death in ischemic heart disease is considered to be one of the important therapeutic targets, however, the detailed mechanisms of this cell death process are not clear. In this study, we investigated the mechanisms of non-apoptotic cell death in cultured neonatal rat cardiomyocytes during ischemia, and the cardioprotection by preventing the mechanisms. We found that ischemia caused elevation of the phospholipase A2 (iPLA2) expression in the myocytes, leading to distinctive non-apoptotic nuclear shrinkage, and cell death. Moreover, we investigated whether the potent cardioprotective corticotropin-releasing hormone (CRH), urocortin, which had been less focused on non-apoptotic cell death, inhibits the ischemic myocyte death. Ischemia-augmented nuclear shrinkage of the myocytes was suppressed by the pretreatment of ∼10 nM urocortin before the cells were exposed to ischemia. Urocortin could significantly suppress the expression and activity of iPLA2, resulting in preventing the ischemia-induced cell death. The survival-promoting effect of urocortin was abrogated by the CRH receptor antagonist astressin. These findings provide the first evidence linking the targets of the urocortin-mediated cardioprotection to the suppression of the caspase-independent, non-apoptotic death in cardiac myocytes exposed to ischemia.  相似文献   

5.
Myocardial ischemia/reperfusion is well recognized as a major cause of apoptotic or necrotic cell death. Neonatal rat cardiac myocytes are intrinsically resistant to hypoxia-induced apoptosis, suggesting a protective role of energy-generating substrates. In the present report, a model of sustained hypoxia of primary cultures of Percoll-enriched neonatal rat cardiac myocytes was used to study specifically the modulatory role of extracellular glucose and other intermediary substrates of energy metabolism (pyruvate, lactate, propionate) as well as glycolytic inhibitors (2-deoxyglucose and iodoacetate) on the induction and maintenance of apoptosis. In the absence of glucose and other substrates, hypoxia (5% CO2 and 95% N2) caused apoptosis in 14% of cardiac myocytes at 3 h and in 22% of cells at 6-8 h of hypoxia, as revealed by sarcolemmal membrane blebbing, nuclear fragmentation, and chromatin condensation (Hoechst staining), terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, and DNA laddering. This was accompanied by translocation of cytochrome c from the mitochondria to the cytosol and cleavage of the death substrate poly(ADP-ribose) polymerase. Cleavage of poly(ADP-ribose) polymerase and DNA laddering were prevented by preincubation with the caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk) and benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone (zDEVD-fmk), indicating activation of caspases in the apoptotic process. The caspase inhibitor zDEVD-fmk also partially inhibited cytochrome c translocation. The presence of as little as 1 mM glucose, but not pyruvate, lactate, or propionate, before hypoxia prevented apoptosis. Inhibiting glycolysis by 2-deoxyglucose or iodoacetate, in the presence of glucose, reversed the protective effect of glucose. This study demonstrates that glycolysis of extracellular glucose, and not other metabolic pathways, protects cardiac myocytes from hypoxic injury and subsequent apoptosis.  相似文献   

6.
This paper describes studies on the fatty acid composition of individual phospholipids of the neonatal rat cardiomyocyte as well as in the gas-dissected sarcolemma derived from those cells. There is a sarcolemmal fatty acid asymmetry between the two leaflets of the membrane, which results from an asymmetric phospholipid distribution and particular fatty acid composition of each phospholipid class. The cytoplasmic leaflet is shown to be more unsaturated than the outer one. The phospholipids preferring the inner sarcolemmal leaflet (PE, PS, and PI) are particularly rich in two fatty acids, stearic acid and arachidonic acid. The implications of the data in current models for Ca2+ binding and for disruption of sarcolemma following ischemia and reperfusion damage are discussed.  相似文献   

7.
To clarify whether apoptosis is involved in the injury processes induced by autoantibodyagainst cardiac β_1-adrenoceptor,we investigated the biological and apoptotic effects of antibodies on culturedneonatal rat cardiomyocytes.Wistar rats were immunized with peptides corresponding to the second extra-cellular loop of the β_1-adrenoceptor to induce the production of anti-β_1-adrenoceptor antibodies in the sera.Immunoglobulin(Ig)G in the sera was detected using synthetic antigen enzyme-linked immunosorbentassay and purified using the diethylaminoethyl cellulose ion exchange technique.Apoptosis of cardiomyo-cytes was evaluated using agarose gel electrophoresis and flow cytometry.Our results showed that thepositive serum IgG greatly increased the beating rates of cardiomyocytes and showed an"agonist-like"activity.Furthermore,positive serum IgG induced cardiomyocyte apoptosis after treatment with β_1-adrenoceptor overstimulation for 48h.The effects of monoclonal antibody against β_-adrenoceptor werealso found to be similar to those of positive serum IgG.It was suggested that the autoantibody could inducecardiomyocyte apoptosis by excessive stimulation of β_1-adrenoceptor.  相似文献   

8.
In vitro studies have indicated that the 1-stearoyl, 2-arachidonyl diacylglycerol (DAG) is the most effective one for the activation of protein kinase C, although many other DAGs having a different fatty acid composition are active, but to a different extent. Using cultures of neonatal rat ventricular cells, grown in a medium enriched in docosahexaenoic acid (DHA), we previously obtained a cell population that, after alpha 1-adrenoceptor stimulation, produced a DHA enriched DAG. In this study, we have tested the "in vivo" ability of this modified DAG as protein kinase C activator, demonstrating a lower but more persistent translocation of the enzyme from cytosol to particulate fraction in the DHA treated cells. The differences in the PKC activation pattern could be explained by a different metabolism of the DHA enriched DAG by DAG kinase.  相似文献   

9.
Ginsengs are widely used to improve cardiac health and circulation. Loosely termed as ginsengs, Asian (Panax), Siberian and Ashwagandha (Indian Ginseng) Indian ginsengs are prepared from different plants. We tested the popular belief of cardiotonic effects of ginsengs using both neonatal and adult rat cardiomyocytes, comparing extracts from the three ginsengs. Addition of 10% v/v of extract (100 microl of extract/ml of culture medium) of each of the ginsengs resulted in a rapid (<10 s) cessation of beating in neonatal cardiomyocytes due to calcium overload, while sequential dilutions revealed that treatment with a low dose (0.01% v/v, 0.1 microl/ml of the medium) resulted in constant, regular beats (transients), and a slight elevation of diastolic calcium without overload. Addition of extracts to sparking, calcium-tolerant adult cardiomyocytes resulted in initiation of calcium transients, and adult cells were able to tolerate exposure to high concentrations of extract. Cardiotonic effects in adult cells (cardiotoxicity in neonatal cells) were most profound with Asian ginseng (2.6 times that of Siberian ginseng, 1.6 times that of Indian ginseng) probably due to the active ingredients (ginsenosides in Asian, eleutherosides in Siberian and withanolides in Indian) being structurally different. We conclude that fully developed cardiomyocytes are able to accommodate higher doses of ginseng than neonatal cells, and that the effects of ginseng on newly formed, developing myocytes, could be extremely deleterious to the fetus. However, for adults, ginseng might well be a 'tonic' in its ability to increase beating and intramyocytic calcium levels.  相似文献   

10.
Calcium-sensing receptors (CaSRs) are G-protein coupled receptors which regulate systemic calcium homeostasis and also participate in cell proliferation, differentiation and apoptosis. We have previously shown that CaSR can induce apoptosis in isolated rat adult hearts and in normal rat neonatal cardiomyocytes. However, no knowledge exists concerning the role of CaSR in apoptosis induced by ischemia and reperfusion in neonatal cardiac myocytes. Therefore, in the present study, we incubated primary neonatal rat ventricular cardiomyocytes in ischemia-mimetic solution for 2h, then re-incubated them in a normal culture medium for 24h to establish a model of simulated ischemia/reperfusion (I/R). We assayed the apoptotic ratio of the cardiomyocytes by flow cytometry; observed morphological alterations by transmission electron microscope; analyzed the expression of caspase-3, Bcl-2, CaSR, extracellular signal-regulated protein kinase (ERK), and Fas/Fas ligand (FasL) by Western blotting; and measured the concentration of intracellular calcium by Laser Confocal Scanning Microscopy. The results showed that simulated I/R increased the expression of CaSR and cardiomyocyte apoptosis. GdCl3, a specific activator of CaSR, further enhanced CaSR expression, along with increases in intracellular calcium and apoptosis in cardiomyocytes during I/R. Activation of CaSR down-regulated Bcl-2 expression, up-regulated caspase-3 and Fas/FasL expression and stimulated ERK1/2 phosphorylation. In summary, CaSR is involved in I/R injury and apoptosis of neonatal rat ventricular cardiomyocytes by inhibiting Bcl-2, inducing calcium overload and activating the Fas/FasL death receptor pathway.  相似文献   

11.
Nitric oxide (NO) has been implicated as a cardioprotective agent during ischemia/reperfusion (I/R), but the mechanism of protection is unknown. Oxidant stress contributes to cell death in I/R, so we tested whether NO protects by attenuating oxidant stress. Cardiomyocytes and murine embryonic fibroblasts were administered NO (10-1200 nM) during simulated ischemia, and cell death was assessed during reperfusion without NO. In each case, NO abrogated cell death during reperfusion. Cells overexpressing endothelial NO synthase (NOS) exhibited a similar protection, which was abolished by the NOS inhibitor N(omega)-nitro-l-arginine methyl ester. Protection was not mediated by guanylate cyclase or the mitochondrial K(ATP) channel, as inhibitors of these systems failed to abolish protection. NO did not prevent decreases in mitochondrial potential, but cells protected with NO demonstrated recovery of potential at reperfusion. Measurements using C11-BODIPY reveal that NO attenuates lipid peroxidation during ischemia and reperfusion. Measurements of oxidant stress using the ratiometric redox sensor HSP-FRET demonstrate that NO attenuates protein oxidation during ischemia. These findings reveal that physiological levels of NO during ischemia can attenuate oxidant stress both during ischemia and during reperfusion. This response is associated with a remarkable attenuation of cell death, suggesting that ischemic cell death may be a regulated event.  相似文献   

12.
We previously found that Endothelin-1(1-31) (ET-1(1-31)) exhibited a pro-arrhythmogenic effect in isolated rat hearts. In this study, we further investigated the effects of ET-1(1-31) on a cell viability and observed [Ca(2+)](i) in cultured cardiomyocytes. Cultured neonatal rat cardiomyocytes were treated with 0.1, 1, and 10 nM ET-1(1-31) for 24h in the presence or absence of ET(A) receptor antagonist (BQ(123)) or phosphoramidon, a NEP/ECE inhibitor. Cell injury was evaluated by supernatant lactate dehydrogenase (LDH) assay, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content. Cell viability was assessed by MTT assay. [Ca(2+)](i) was measured with Fluo-3/AM under a laser confocal microscope. 1) ET-1(1-31) dose-dependently increased LDH release and decreased cell viability. 2) LDH and MDA levels were significantly elevated and SOD activity decreased after administration of 1 nM ET-1(1-31) for 24h, and these changes were markedly attenuated by 1 uM BQ(123). 3) Exposure to 10 nM ET 1(1-31) caused a continuous increase in [Ca(2+)](i) to cultured beating cardiomyocytes and termination of [Ca(2+)](i) transient within 6 min, and this change was reversed by 1 uM BQ(123) and attenuated by 0.5 mM phosphoramidon. These results suggest that ET-1(1-31) could cause cell injury, and that the effect of ET-1(1-31) on [Ca(2+)](i) transients is mainly mediated by ET(A) receptor and partially attributed to the conversion of ET-1(1-31) to ET-1(1-21).  相似文献   

13.
Glutamate is a well-characterized excitatory neurotransmitter in the central nervous system (CNS). Recently, glutamate receptors (GluRs) were also found in peripheral tissues, including the heart. However, the function of GluRs in peripheral organs remains poorly understood. In the present study, we found that N-methyl-D-aspartate (NMDA) could increase intracellular calcium ([Ca(2+)]i) level in a dose-dependent manner in cultured neonatal rat cardiomyocytes. NMDA at 10(-4) M increased the levels of reactive oxygen species (ROS), cytosolic cytochrome c (cyto c), and 17-kDa caspase-3, but depolarized mitochondrial membrane potential, leading to cardiomyocyte apoptosis. In addition, NMDA treatment induced an increase in bax mRNA but a decrease in bcl-2 mRNA expression in the cardiomyocytes. The above effects of NMDA were blocked by the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801), and by ROS scavengers glutathione (GSH) and N-acetylcystein (NAC). These results suggest that stimulation of NMDA receptor in the cardiomyocyte may lead to apoptosis via a Ca(2+), ROS, and caspase-3 mediated pathway. These findings suggest that NMDA receptor may play an important role in myocardial pathogenesis.  相似文献   

14.
Activated Akt kinase has been proposed as a central role in suppressing apoptosis by modulating the activities of Bcl-2 family proteins and/or caspase-9. To study the mechanism underlying the anti-apoptotic effect of taurine, the interaction between taurine and Akt/caspase-9 pathway was examined using a simulated ischemia model with cultured rat neonatal cardiomyocytes sealed in closed flasks. Taurine (20mM) treatment attenuated simulated ischemia-induced decline in the activity of Akt. Although taurine treatment had no effect on the expression of Bcl-2 in mitochondria and the level of cytosolic cytochrome c, it inhibited ischemia-induced cleavage of caspases 9 and 3. Moreover, adenovirus transfer of the dominant negative form of Akt objected taurine-mediated anti-apoptotic effects, cancelling the suppression of caspase-9 and caspase-3 activities by taurine. These findings provide the first evidence that taurine inhibits ischemia-induced apoptosis in cardiac myocytes with the increase in Akt activities, by inactivating caspase-9.  相似文献   

15.
Pan YX  Ren AJ  Zheng J  Rong WF  Chen H  Yan XH  Wu C  Yuan WJ  Lin L 《Life sciences》2007,81(13):1042-1049
Hypoxic preconditioning (HPC) has been well demonstrated to have potent protective effects in many cell types; however, the mechanisms responsible for this phenomenon are not fully understood. Recently, glucose-regulated protein 78 (GRP78), an inducible molecular chaperon, was indicated to be associated with ischemic preconditioning. We hypothesized that HPC protects cardiomyocytes against hypoxia by inducing GRP78 in cultured neonatal rat cardiomyocytes. HPC was induced by exposing cardiomyocytes to brief hypoxia (1% O(2), 30 min) followed by reoxygenation. GRP78 was expressed constitutively in cultured cardiomyocytes and its expression was enhanced at 12 h, peaked at 24 h (207.3+/-23.6% of the baseline), and was sustained for up to 72 h after HPC. Twenty-four hours after HPC, the myocytes were subjected to prolonged hypoxia (1% O(2), 12 h). The lactic dehydrogenase (LDH) release and malondialdehyde (MDA) content were reduced, while cell viability and superoxide dismutase (SOD) activity were increased in the preconditioned cells compared with the non-HPC cells. The GRP78 protein level was higher in cells exposed to both HPC and hypoxia than in the cells exposed to HPC alone or hypoxia alone. Heat shock protein 70 (HSP70) was induced in parallel by late HPC. Transfection of GRP78 antisense oligonucleotides blocked GRP78 expression but not HSP70, resulting in attenuated cardioprotection afforded by late HPC. Furthermore, inducing GRP78 by gene transfer protected cardiomyocytes from hypoxic injury. These findings demonstrate that the induction of GRP78 partially mediates the late HPC, suggesting that GRP78 is a novel mechanism responsible for the late cytoprotection of HPC.  相似文献   

16.
Vasopressin accelerates protein synthesis in neonatal rat cardiomyocytes   总被引:7,自引:0,他引:7  
Arginine vasopressin (AVP) has been shown to promote vascular smooth muscle cell hypertrophy and hyperplasia of fibroblasts. The present study examines the effect of AVP and endothelin-1 (ET-1) on protein, DNA, and RNA synthesis in primary cultures of serum deprived neonatal rat cardiomyocytes (RC) as assessed by changes in [3H] phenylalanine, [3H] thymidine, and [14C] uridine incorporation respectively. Both AVP and ET-1 evoked significant increases in protein synthesis in RC of 36 ± 12% (p < 0.05) and 53 ± 22% (p < 0.01) respectively. The stimulating action of AVP on [3H] phenylalanine incorporation was abolished by pretreatment with 2-nitro-4carboxyphenyl-N, N-diphenylcarbamate (NCDC), a phospholipase C (PLC) inhibitor. [14C] uridine incorporation was significantly higher in cells incubated with ET-1 (95 ± 12%) but not AVP (9 ± 11%). Neither AVP nor ET-1 significantly affected cell number or [3H] thymidine incorporation, suggesting a lack of a hyperplastic effect. AVP evoked an increase in [Ca2+]i levels (162 ± 12 nmol/L from a basal value of 77 ± 6 nmol/L) which was completely abolished by pretreatment with either NCDC or cyclopiazonic acid (sarcoplasmic reticulum (SR) Ca2+ pump inhibitor) but unaffected by ryanodine (ryanodine sensitive SR Ca2+ store depletor). Taken together, these data suggest that AVP, in a PLC dependent manner, stimulates both protein synthesis and augments [Ca2+]i release in RC from ryanodine insensitive (IP3 sensitive) Ca2+ stores. Thus, AVP may promote cardiac hypertrophy via direct effects on cardiomyocyte protein synthesis secondary to IP3 mediated [Ca2+]i release.  相似文献   

17.
Although apoptosis and necrosis have been considered different pathways to cell death, only one compound induces both types of cell death. Diethyldithiocarbamate (DDC) has been shown to have antioxidant or prooxidant effects in several different systems. We observed in our present study that DDC induced not only apoptosis but also necrosis depending on its dosage in HL60 premyelocytic leukemia cells. Moreover, in hypoxia cell culture conditions, DDC-induced necrotic cells decreased but DDC-induced apoptosis continued. We investigated the DDC-induced different cell death mechanisms as they are correlated with reactive oxygen species (ROS). High-dose DDC-induced necrotic cell death is thought to depend on the increase of intracellular ROS, while low-dose DDC-induced apoptosis is thought to depend on changes of the intracellular redox state by the transporting of external metal ions. There was no sequential or quantitative change of Bcl-2 family proteins in DDC-induced apoptotic or necrotic pathways. However, the mitochondrial transmembrane potential was remarkably decreased in the DDC-induced necrosis. Finally, duration of c-Jun N-terminal kinase (JNK) activation resulted in different types of cell death.  相似文献   

18.
Cardiac hypertrophy is a common pathological change accompanying cardiovascular disease. Recently, some evidence indicated that calcium-sensing receptor (CaSR) expressed in the cardiovascular tissue. However, the functional involvement of CaSR in cardiac hypertrophy remains unclear. Previous studies have shown that CaSR caused accumulation of inositol phosphate to increase the release of intracellular calcium. Moreover, Ca2+-dependent phosphatase calcineurin (CaN) played a vital role in the development of cardiac hypertrophy. Therefore, we investigated the expression of CaSR in cardiac hypertrophy-induced by angiotensin II (AngII) and the effects of CaSR activated by GdCl3 on the related signaling transduction pathways. The results showed that AngII induced cardiac hypertrophy and up-regulated the expression of CaSR, meanwhile increased the intracellular calcium concentration ([Ca2+]i) and activated CaN hypertrophic signaling pathway. Compared with AngII alone, the above changes were further obvious when adding GdCl3. But the effects of GdCl3 on the cardiac hypertrophy were attenuated by CsA, a specific inhibitor of CaN. In conclusion, these results suggest that CaSR is involved in cardiac hypertrophy-induced by AngII through CaN pathway in cultured neonatal rat cardiomyocytes.  相似文献   

19.
Calcium currents from neonatal rat ventricular heart muscle cells grown in primary culture were examined using the "whole-cell" voltage clamp technique. An inward current characterized by large amplitude and slow inactivation decay was induced when the extracellular Ca2+ concentration was reduced by EGTA. This current was suppressed by extracellular Na+ removal, or by calcium antagonists, and increased by epinephrine and BAY K 8644. These findings suggest that this current is carried by sodium ions through Ca channels. Both Ca and Na currents through calcium channels were irreversibly blocked by omega-conotoxin. Complete blockade developed 10-15 minutes after the toxin introduction in the extracellular solution. Blockade of Na currents through calcium channels was characterized by a transient increase of current amplitude without any changes in its kinetics and voltage-dependent properties. Structural differences between calcium channels in rat and guinea-pig and frog cardiomyocytes were suggested.  相似文献   

20.

Background

Myocardial ischemia/reperfusion injury is the major cause of morbidity and mortality for cardiovascular diseases. Dopamine D2 receptors are expressed in cardiac tissues. However, the roles of dopamine D2 receptors in myocardial ischemia/reperfusion injury and cardiomyocyte apoptosis are unclear. Here we investigated the effects of both dopamine D2 receptors agonist (bromocriptine) and antagonist (haloperidol) on apoptosis of cultured neonatal rat ventricular myocytes induced by ischemia/reperfusion injury.

Methods

Myocardial ischemia/reperfusion injury was simulated by incubating primarily cultured neonatal rat cardiomyocytes in ischemic (hypoxic) buffer solution for 2 h. Thereafter, these cells were incubated for 24 h in normal culture medium.

Results

Treatment of the cardiomyocytes with 10 μM bromocriptine significantly decreased lactate dehydrogenase activity, increased superoxide dismutase activity, and decreased malondialdehyde content in the culture medium. Bromocriptine significantly inhibited the release of cytochrome c, accumulation of [Ca2+]i, and apoptosis induced by ischemia/reperfusion injury. Bromocriptine also down-regulated the expression of caspase-3 and -9, Fas and Fas ligand, and up-regulated Bcl-2 expression. In contrast, haloperidol (10 μM) had no significant effects on the apoptosis of cultured cardiomyocytes under the aforementioned conditions.

Conclusions

These data suggest that activation of dopamine D2 receptors can inhibit apoptosis of cardiomyocytes encountered during ischemia/reperfusion damage through various pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号