首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
Sarcolemmal membrane-associated protein (SLMAP) is a tail-anchored protein involved in fundamental cellular processes, such as myoblast fusion, cell cycle progression, and chromosomal inheritance. Further, SLMAP misexpression is associated with endothelial dysfunctions in diabetes and cancer. SLMAP is part of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complex required for specific signaling pathways in yeasts, filamentous fungi, insects, and mammals. In filamentous fungi, STRIPAK was initially discovered in Sordaria macrospora, a model system for fungal differentiation. Here, we functionally characterize the STRIPAK subunit PRO45, a homolog of human SLMAP. We show that PRO45 is required for sexual propagation and cell-to-cell fusion and that its forkhead-associated (FHA) domain is essential for these processes. Protein-protein interaction studies revealed that PRO45 binds to STRIPAK subunits PRO11 and SmMOB3, which are also required for sexual propagation. Superresolution structured-illumination microscopy (SIM) further established that PRO45 localizes to the nuclear envelope, endoplasmic reticulum, and mitochondria. SIM also showed that localization to the nuclear envelope requires STRIPAK subunits PRO11 and PRO22, whereas for mitochondria it does not. Taken together, our study provides important insights into fundamental roles of the fungal SLMAP homolog PRO45 and suggests STRIPAK-related and STRIPAK-unrelated functions.  相似文献   

3.
Adenosylcobalamin-dependent isomerases catalyze carbon skeleton rearrangements using radical chemistry. We have recently demonstrated that an isobutyryl-CoA mutase variant, IcmF, a member of this enzyme family that catalyzes the interconversion of isobutyryl-CoA and n-butyryl-CoA also catalyzes the interconversion between isovaleryl-CoA and pivalyl-CoA, albeit with low efficiency and high susceptibility to inactivation. Given the biotechnological potential of the isovaleryl-CoA/pivalyl-CoA mutase (PCM) reaction, we initially attempted to engineer IcmF to be a more proficient PCM by targeting two active site residues predicted based on sequence alignments and crystal structures, to be key to substrate selectivity. Of the eight mutants tested, the F598A mutation was the most robust, resulting in an ∼17-fold increase in the catalytic efficiency of the PCM activity and a concomitant ∼240-fold decrease in the isobutyryl-CoA mutase activity compared with wild-type IcmF. Hence, mutation of a single residue in IcmF tuned substrate specificity yielding an ∼4000-fold increase in the specificity for an unnatural substrate. However, the F598A mutant was even more susceptible to inactivation than wild-type IcmF. To circumvent this limitation, we used bioinformatics analysis to identify an authentic PCM in genomic databases. Cloning and expression of the putative AdoCbl-dependent PCM with an α2β2 heterotetrameric organization similar to that of isobutyryl-CoA mutase and a recently characterized archaeal methylmalonyl-CoA mutase, allowed demonstration of its robust PCM activity. To simplify kinetic analysis and handling, a variant PCM-F was generated in which the αβ subunits were fused into a single polypeptide via a short 11-amino acid linker. The fusion protein, PCM-F, retained high PCM activity and like PCM, was resistant to inactivation. Neither PCM nor PCM-F displayed detectable isobutyryl-CoA mutase activity, demonstrating that PCM represents a novel 5′-deoxyadenosylcobalamin-dependent acyl-CoA mutase. The newly discovered PCM and the derivative PCM-F, have potential applications in bioremediation of pivalic acid found in sludge, in stereospecific synthesis of C5 carboxylic acids and alcohols, and in the production of potential commodity and specialty chemicals.  相似文献   

4.
V Cracan  R Banerjee 《Biochemistry》2012,51(31):6039-6046
The recent spate of discoveries of novel acyl-CoA mutases has engendered a growing appreciation for the diversity of 5'-deoxyadenosylcobalamin-dependent rearrangement reactions. The prototype of the reaction catalyzed by these enzymes is the 1,2 interchange of a hydrogen atom with a thioester group leading to a change in the degree of carbon skeleton branching. These enzymes are predicted to share common architectural elements: a Rossman fold and a triose phosphate isomerase (TIM)-barrel domain for binding cofactor and substrate, respectively. Within this family, methylmalonyl-CoA mutase (MCM) is the best studied and is the only member found in organisms ranging from bacteria to man. MCM interconverts (2R)-methylmalonyl-CoA and succinyl-CoA. The more recently discovered family members include isobutyryl-CoA mutase (ICM), which interconverts isobutyryl-CoA and n-butyryl-CoA; ethylmalonyl-CoA mutase, which interconverts (2R)-ethylmalonyl-CoA and (2S)-methylsuccinyl-CoA; and 2-hydroxyisobutyryl-CoA mutase, which interconverts 2-hydroxyisobutyryl-CoA and (3S)-hydroxybutyryl-CoA. A variant in which the two subunits of ICM are fused to a G-protein chaperone, IcmF, has been described recently. In addition to its ICM activity, IcmF also catalyzes the interconversion of isovaleryl-CoA and pivalyl-CoA. This review focuses on the involvement of acyl-CoA mutases in central carbon and secondary bacterial metabolism and on their biotechnological potential for applications ranging from bioremediation to stereospecific synthesis of C2-C5 carboxylic acids and alcohols, and for production of potential commodity and specialty chemicals.  相似文献   

5.
HS3st1 (heparan sulfate 3-O-sulfotransferase isoform-1) is a critical enzyme involved in the biosynthesis of the antithrombin III (AT)-binding site in the biopharmaceutical drug heparin. Heparin is a highly sulfated glycosaminoglycan that shares a common biosynthetic pathway with heparan sulfate (HS). Although only granulated cells, such as mast cells, biosynthesize heparin, all animal cells are capable of biosynthesizing HS. As part of an effort to bioengineer CHO cells to produce heparin, we previously showed that the introduction of both HS3st1 and NDST2 (N-deacetylase/N-sulfotransferase isoform-2) afforded HS with a very low level of anticoagulant activity. This study demonstrated that untargeted HS3st1 is broadly distributed throughout CHO cells and forms no detectable AT-binding sites, whereas Golgi-targeted HS3st1 localizes in the Golgi and results in the formation of a single type of AT-binding site and high anti-factor Xa activity (137 ± 36 units/mg). Moreover, stable overexpression of HS3st1 also results in up-regulation of 2-O-, 6-O-, and N-sulfo group-containing disaccharides, further emphasizing a previously unknown concerted interplay between the HS biosynthetic enzymes and suggesting the need to control the expression level of all of the biosynthetic enzymes to produce heparin in CHO cells.  相似文献   

6.
Phytochromes enable plants to sense light information and regulate developmental responses. Phytochromes interact with partner proteins to transmit light signals to downstream components for plant development. PIRF1 (phytochrome-interacting ROP guanine-nucleotide exchange factor (RopGEF 1)) functions as a light-signaling switch regulating root development through the activation of ROPs (Rho-like GTPase of plant) in the cytoplasm. In vitro pulldown and yeast two-hybrid assays confirmed the interaction between PIRF1 and phytochromes. PIRF1 interacted with the N-terminal domain of phytochromes through its conserved PRONE (plant-specific ROP nucleotide exchanger) region. PIRF1 also interacted with ROPs and activated them in a phytochrome-dependent manner. The Pr form of phytochrome A enhanced the RopGEF activity of PIRF1, whereas the Pfr form inhibited it. A bimolecular fluorescence complementation analysis demonstrated that PIRF1 was localized in the cytoplasm and bound to the phytochromes in darkness but not in light. PIRF1 loss of function mutants (pirf1) of Arabidopsis thaliana showed a longer root phenotype in the dark. In addition, both PIRF1 overexpression mutants (PIRF1-OX) and phytochrome-null mutants (phyA-211 and phyB-9) showed retarded root elongation and irregular root hair formation, suggesting that PIRF1 is a negative regulator of phytochrome-mediated primary root development. We propose that phytochrome and ROP signaling are interconnected through PIRF1 in regulating the root growth and development in Arabidopsis.  相似文献   

7.
The type VI secretion system (T6SS), a multisubunit needle-like apparatus, has recently been found to play a role in interspecies interactions. The Gram-negative bacteria harboring T6SS (donor) deliver the effectors into their neighboring cells (recipient) to kill them. Meanwhile, the cognate immunity proteins were employed to protect the donor cells against the toxic effectors. Tae4 (type VI amidase effector 4) and Tai4 (type VI amidase immunity 4) are newly identified T6SS effector-immunity pairs. Here, we report the crystal structures of Tae4 from Enterobacter cloacae and Tae4-Tai4 complexes from both E. cloacae and Salmonella typhimurium. Tae4 acts as a dl-endopeptidase and displays a typical N1pC/P60 domain. Unlike Tsi1 (type VI secretion immunity 1), Tai4 is an all-helical protein and forms a dimer in solution. The small angle x-ray scattering study combined with the analytical ultracentrifugation reveal that the Tae4-Tai4 complex is a compact heterotetramer that consists of a Tai4 dimer and two Tae4 molecules in solution. Structure-based mutational analysis of the Tae4-Tai4 interface shows that a helix (α3) of one subunit in dimeric Tai4 plays a major role in binding of Tae4, whereas a protruding loop (L4) in the other subunit is mainly responsible for inhibiting Tae4 activity. The inhibition process requires collaboration between the Tai4 dimer. These results reveal a novel and unique inhibition mechanism in effector-immunity pairs and suggest a new strategy to develop antipathogen drugs.  相似文献   

8.
9.
Human MOF (MYST1), a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs), is the human ortholog of the Drosophila males absent on the first (MOF) protein. MOF is the catalytic subunit of the male-specific lethal (MSL) HAT complex, which plays a key role in dosage compensation in the fly and is responsible for a large fraction of histone H4 lysine 16 (H4K16) acetylation in vivo. MOF was recently reported to be a component of a second HAT complex, designated the non-specific lethal (NSL) complex (Mendjan, S., Taipale, M., Kind, J., Holz, H., Gebhardt, P., Schelder, M., Vermeulen, M., Buscaino, A., Duncan, K., Mueller, J., Wilm, M., Stunnenberg, H. G., Saumweber, H., and Akhtar, A. (2006) Mol. Cell 21, 811–823). Here we report an analysis of the subunit composition and substrate specificity of the NSL complex. Proteomic analyses of complexes purified through multiple candidate subunits reveal that NSL is composed of nine subunits. Two of its subunits, WD repeat domain 5 (WDR5) and host cell factor 1 (HCF1), are shared with members of the MLL/SET family of histone H3 lysine 4 (H3K4) methyltransferase complexes, and a third subunit, MCRS1, is shared with the human INO80 chromatin-remodeling complex. In addition, we show that assembly of the MOF HAT into MSL or NSL complexes controls its substrate specificity. Although MSL-associated MOF acetylates nucleosomal histone H4 almost exclusively on lysine 16, NSL-associated MOF exhibits a relaxed specificity and also acetylates nucleosomal histone H4 on lysines 5 and 8.  相似文献   

10.
The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function.  相似文献   

11.

Background

The B3 DNA binding domain includes five families: auxin response factor (ARF), abscisic acid-insensitive3 (ABI3), high level expression of sugar inducible (HSI), related to ABI3/VP1 (RAV) and reproductive meristem (REM). The release of the complete genomes of the angiosperm eudicots Arabidopsis thaliana and Populus trichocarpa, the monocot Orysa sativa, the bryophyte Physcomitrella patens,the green algae Chlamydomonas reinhardtii and Volvox carteri and the red algae Cyanidioschyzon melorae provided an exceptional opportunity to study the evolution of this superfamily.

Methodology

In order to better understand the origin and the diversification of B3 domains in plants, we combined comparative phylogenetic analysis with exon/intron structure and duplication events. In addition, we investigated the conservation and divergence of the B3 domain during the origin and evolution of each family.

Conclusions

Our data indicate that showed that the B3 containing genes have undergone extensive duplication events, and that the REM family B3 domain has a highly diverged DNA binding. Our results also indicate that the founding member of the B3 gene family is likely to be similar to the ABI3/HSI genes found in C. reinhardtii and V. carteri. Among the B3 families, ABI3, HSI, RAV and ARF are most structurally conserved, whereas the REM family has experienced a rapid divergence. These results are discussed in light of their functional and evolutionary roles in plant development.  相似文献   

12.
Ankyrin repeat domain protein 2 (ANKRD2) translocates from the nucleus to the cytoplasm upon myogenic induction. Overexpression of ANKRD2 inhibits C2C12 myoblast differentiation. However, the mechanism by which ANKRD2 inhibits myoblast differentiation is unknown. We demonstrate that the primary myoblasts of mdm (muscular dystrophy with myositis) mice (pMBmdm) overexpress ANKRD2 and ID3 (inhibitor of DNA binding 3) proteins and are unable to differentiate into myotubes upon myogenic induction. Although suppression of either ANKRD2 or ID3 induces myoblast differentiation in mdm mice, overexpression of ANKRD2 and inhibition of ID3 or vice versa is insufficient to inhibit myoblast differentiation in WT mice. We identified that ANKRD2 and ID3 cooperatively inhibit myoblast differentiation by physical interaction. Interestingly, although MyoD activates the Ankrd2 promoter in the skeletal muscles of wild-type mice, SREBP-1 (sterol regulatory element binding protein-1) activates the same promoter in the skeletal muscles of mdm mice, suggesting the differential regulation of Ankrd2. Overall, we uncovered a novel pathway in which SREBP-1/ANKRD2/ID3 activation inhibits myoblast differentiation, and we propose that this pathway acts as a critical determinant of the skeletal muscle developmental program.  相似文献   

13.
Shewanella oneidensis couples oxidation of lactate to respiration of many substrates. Here we report that llpR (l-lactate-positive regulator, SO_3460) encodes a positive regulator of l-lactate utilization distinct from previously studied regulators. We also demonstrate d-lactate inhibition of l-lactate utilization in S. oneidensis, resulting in preferential utilization of the d isomer.  相似文献   

14.
15.
The coenzyme B(12)-dependent isobutyryl coenzyme A (CoA) mutase (ICM) and methylmalonyl-CoA mutase (MCM) catalyze the isomerization of n-butyryl-CoA to isobutyryl-CoA and of methylmalonyl-CoA to succinyl-CoA, respectively. The influence that both mutases have on the conversion of n- and isobutyryl-CoA to methylmalonyl-CoA and the use of the latter in polyketide biosynthesis have been investigated with the polyether antibiotic (monensin) producer Streptomyces cinnamonensis. Mutants prepared by inserting a hygromycin resistance gene (hygB) into either icmA or mutB, encoding the large subunits of ICM and MCM, respectively, have been characterized. The icmA::hygB mutant was unable to grow on valine or isobutyrate as the sole carbon source but grew normally on butyrate, indicating a key role for ICM in valine and isobutyrate metabolism in minimal medium. The mutB::hygB mutant was unable to grow on propionate and grew only weakly on butyrate and isobutyrate as sole carbon sources. (13)C-labeling experiments show that in both mutants butyrate and acetoacetate may be incorporated into the propionate units in monensin A without cleavage to acetate units. Hence, n-butyryl-CoA may be converted into methylmalonyl-CoA through a carbon skeleton rearrangement for which neither ICM nor MCM alone is essential.  相似文献   

16.
Ubiquitin pathway E3 ligases are an important component conferring specificity and regulation in ubiquitin attachment to substrate proteins. The Arabidopsis thaliana RING (Really Interesting New Gene) domain-containing proteins BRIZ1 and BRIZ2 are essential for normal seed germination and post-germination growth. Loss of either BRIZ1 (At2g42160) or BRIZ2 (At2g26000) results in a severe phenotype. Heterozygous parents produce progeny that segregate 3:1 for wild-type:growth-arrested seedlings. Homozygous T-DNA insertion lines are recovered for BRIZ1 and BRIZ2 after introduction of a transgene containing the respective coding sequence, demonstrating that disruption of BRIZ1 or BRIZ2 in the T-DNA insertion lines is responsible for the observed phenotype. Both proteins have multiple predicted domains in addition to the RING domain as follows: a BRAP2 (BRCA1-Associated Protein 2), a ZnF UBP (Zinc Finger Ubiquitin Binding protein), and a coiled-coil domain. In vitro, both BRIZ1 and BRIZ2 are active as E3 ligases but only BRIZ2 binds ubiquitin. In vitro synthesized and purified recombinant BRIZ1 and BRIZ2 preferentially form hetero-oligomers rather than homo-oligomers, and the coiled-coil domain is necessary and sufficient for this interaction. BRIZ1 and BRIZ2 co-purify after expression in tobacco leaves, which also requires the coiled-coil domain. BRIZ1 and BRIZ2 coding regions with substitutions in the RING domain are inactive in vitro and, after introduction, fail to complement their respective mutant lines. In our current model, BRIZ1 and BRIZ2 together are required for formation of a functional ubiquitin E3 ligase in vivo, and this complex is required for germination and early seedling growth.  相似文献   

17.
Regulatory properties of chorismate mutase from Corynebacterium glutamicum were studied using the dialyzed cell-free extract. The enzyme activity was strongly feedback inhibited by l-phenylalanine (90% inhibition at 0.1~1 mm) and almost completely by a pair of l-tyrosine and l-phenylalanine (each at 0.1~1 mm). The enzyme from phenylalanine auxotrophs was scarcely inhibited by l-tyrosine alone but the enzyme from a wild-type strain or a tyrosine auxotroph was weakly inhibited by l-tyrosine alone (40~50% inhibition, l-tyrosine at 1 mm). The enzyme activity was stimulated by l-tryptophan and the inhibition by l-phenylalanine alone or in the simultaneous presence of l-tyrosine was reversed by l-tryptophan. The Km value of the reaction for chorismate was 2.9 } 10?3 m. Formation of chorismate mutase was repressed by l-phenylalanine. A phenylalanine auxotrophic l-tyrosine producer, C. glutamicum 98–Tx–71, which is resistant to 3-amino-tyrosine, p-aminophenylanaine, p-fluorophenylalanine and tyrosine hydroxamate had chorismate mutase derepressed to two-fold level of the parent KY 10233. The enzyme in C. glutamicum seems to have two physiological roles; one is the control of the metabolic flow to l-phenylalanine and l-tyrosine biosynthesis and the other is the balanced partition of chorismate between l-phenylalanine-l-tyrosine biosynthesis and l-tryptophan biosynthesis.  相似文献   

18.
19.
The Thailand-Cambodia border is the epicenter for drug-resistant falciparum malaria. Previous studies have shown that chloroquine (CQ) and pyrimethamine resistance originated in this region and eventually spread to other Asian countries and Africa. However, there is a dearth in understanding the origin and evolution of dhps alleles associated with sulfadoxine resistance. The present study was designed to reveal the origin(s) of sulfadoxine resistance in Cambodia and its evolutionary relationship to African and South American dhps alleles. We sequenced 234 Cambodian Plasmodium falciparum isolates for the dhps codons S436A/F, A437G, K540E, A581G and A613S/T implicated in sulfadoxine resistance. We also genotyped 10 microsatellite loci around dhps to determine the genetic backgrounds of various alleles and compared them with the backgrounds of alleles prevalent in Africa and South America. In addition to previously known highly-resistant triple mutant dhps alleles SGEGA and AGEAA (codons 436, 437, 540, 581, 613 are sequentially indicated), a large proportion of the isolates (19.3%) contained a 540N mutation in association with 437G/581G yielding a previously unreported triple mutant allele, SGNGA. Microsatellite data strongly suggest the strength of selection was greater on triple mutant dhps alleles followed by the double and single mutants. We provide evidence for at least three independent origins for the double mutants, one each for the SGKGA, AGKAA and SGEAA alleles. Our data suggest that the triple mutant allele SGEGA and the novel allele SGNGA have common origin on the SGKGA background, whereas the AGEAA triple mutant was derived from AGKAA on multiple, albeit limited, genetic backgrounds. The SGEAA did not share haplotypes with any of the triple mutants. Comparative analysis of the microsatellite haplotypes flanking dhps alleles from Cambodia, Kenya, Cameroon and Venezuela revealed an independent origin of sulfadoxine resistant alleles in each of these regions.  相似文献   

20.
Triggering receptor expressed on myeloid cells-2 (TREM-2) is rapidly emerging as a key regulator of the innate immune response via its regulation of macrophage inflammatory responses. Here we demonstrate that proximal TREM-2 signaling parallels other DAP12-based receptor systems in its use of Syk and Src-family kinases. However, we find that the linker for activation of T cells (LAT) is severely reduced as monocytes differentiate into macrophages and that TREM-2 exclusively uses the linker for activation of B cells (LAB encoded by the gene Lat2−/−) to mediate downstream signaling. LAB is required for TREM-2-mediated activation of Erk1/2 and dampens proximal TREM-2 signals through a novel LAT-independent mechanism resulting in macrophages with proinflammatory properties. Thus, Lat2−/− macrophages have increased TREM-2-induced proximal phosphorylation, and lipopolysaccharide stimulation of these cells leads to increased interleukin-10 (IL-10) and decreased IL-12p40 production relative to wild type cells. Together these data identify LAB as a critical, LAT-independent regulator of TREM-2 signaling and macrophage development capable of controlling subsequent inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号